SmartEnCity, main character of the Europe Congress Palace

SmartEnCity, main character of the Europe Congress Palace

We have already spoken on numerous occasions about the impact of cities on energy consumption and emissions generated to the environment. And consequently, also of the important role that they have to play in the necessary transition towards climate neutrality, the ultimate goal of the European Green Pact for our continent (as my colleague Rubén Garcia pointed out in a previous post, the aim is for Europe to be carbon neutral by 2050).

The road to this neutrality is paved with many interventions, larger or smaller, and covering a wide range of areas (mobility, energy, building rehabilitation, citizen involvement; digitalization…). District or city scale projects -Smart City- funded by the different European Union programmes (from the 7th Framework Programme, through Horizon 2020 and the current Horizon Europe) work on all these dimensions with the idea of generating real demonstrations, and showing the path (or possible paths) that other cities can follow. Obviously, experts in different fields are needed to cover the various areas of competence covered by these projects.

In CARTIF we have been coordinating and working for many years in numerous projects along these lines, and also participating in many of the areas of work of these giants, which are so much in variety of activities as in the breadth of the time scale.

Recently one of these “lighthouse” project in which we have been working during years has finished, SmartEnCity. 78 months of work shared by 38 partners of 6 different countries in a project funded by the Research and Innovation Programme Horizon 2020 of the European Union, and coordinated by Tecnalia, in which it has been intended to make real the vision of convert our european cities in intelligent and zero carbon emissions.

In the project SmartEnCity three lighthouse cities has participated: Vitoria-Gasteiz in Spain, Tartu in Stonia and Sonderborg in Denmark. In all of them different intelligent and innovative solutions have been deployed in different areas with the idea of reaching the desired neutrality.

Discussion table of the Final Conference of SmartEnCity
Discussion table of the Final Conference of SmartEnCity

As a finishing touch, the last 14th and 15th of june, the project celebrated its Final Conference at the Europe Congress Palace, in Vitoria-Gasteiz. More than 120 participants attended the two-day event during which project results and plans for a carbon-free future were presented through keynote speeches, presentations, discussion sessions and moments of interaction by thematic areas.

Julia Vicente and Javier Antolin at the Final Conference of SmartEnCity
Julia Vicente and Javier Antolin at the Final Conference of SmartEnCity

I had the honor of participating and moderating one of the discussion tables that focused on one of the aspects in which CARTIF has been working for years and in which we have extensive experience: monitoring and evaluation. A key aspect to quantify the real impact that these projects achieve. In this case we tried to address these often difficult aspects in a way closer to the audience, sharing the experiences of different experts and projects around the most important aspects to take into account when evaluating project activities, the major problems encountered, solutions implemented and, finally,main lessons learned. I was lucky enough to share the debate with my partner Javier Antolin, who represented the REMOURBAN project, coordinated by CARTIF and which counted with Valladolid as one of its lighthouse cities. MAtchUP, ATELIER, Replicate and Stradust were also present.

One of the common aspects that we could all see is the enormous importance of citizens in the viability and success of these projects. This has a direct impact on the evaluation results and process itself. The transition to emission-neutral and sustainable cities in the broadest sense of the word can only be achieved if we, the citizens, are involved in the transformation process. If we are not barriers but vectors of change. If we go from being spectators to main characters.

From CARTIF we continue and will continue working on projects of the Smart Cities area with the idea of moving towards the horizon of sustainable cities. Will you join us on the way?

Energy poverty makes its way in Europe between heatwaves and energy prices

Energy poverty makes its way in Europe between heatwaves and energy prices

Last June the European Commission (from the Energy Poverty Advisory Hub: EPAH) published a handbook as a guide to understand and addressing energy poverty, which has become a reality in Europe, and particularly in Spain. Although there is no agreement on a common definition of energy poverty, it is widely accepted that there is energy poverty when people cannot maintain an adequate temperature in their homes (either by heating, cooling or applying energy solutions to an affordable cost). The extent and seriousness of the problem has been aggravated in recent months by climate change, whose consequences in the form of heatwaves or extreme droughts are already perceptible and throughout the entire European continent; and by the energy crisis in Europe as a result of the invasion of Ukraine.

The commitment of the European Commission (EC) to address the challenges related to the climate and the environment was ratified with the European Green Deal. It is established as one of the main priorities that the EU must transform itself into a fair and prosperous society, where there are no net GHG emissions in 2050 and where economic growth is decoupled from resource use. In addition, it is reaffirmed that this transition must be fair and inclusive, therefore alleviating energy poverty is a key precondition in this context.

What are the causes of energy poverty?

Common causes of energy poverty
Most common causes of energy poverty. Source: EPAH, Introduction to Energy Poverty Advisory Hub (2022)

Energy poverty is a complex challenged linked to several factors, so there is no single reason that we can point to as the sole cause, in addition to the fact that its nature varies greatly from one local context to another, and that it occurs at domestic level, which makes its identification and quantification quite difficult. Energy poverty also has consequences for the people´s health and well-being, since extreme indoor temperatures are related to respiratory and cardiovascular diseases, heat stroke or excess deaths. In children, it can also have consequences related to poor school performance, as well as the development of respiratory health problems at an early age, and lower social and emotional well-being.

In general, the most common causes that lead to energy poverty are three; low income levels, a lack of energy efficiency in housing, as well as the low energy efficiency of buildings and their systems, and the high energy prices.

Related to these three causes, it is also worth nothing the great influence of climate change, making energy poverty a problem for the most vulnerable groups not only in winter, but also in summer, as a result of the high temperatures recently recorded due to heatwaves.

And these recent heatwaves have broken temperature records around the world this summer, and their impacts and consequences for society and the environment are being dramatic in the form of forest fires and devastated crops, key infrastructure affected (e.g. power cuts electricity supply, deforming roads and tracks, etc.) and causing serious health problems in thousands of people (in addition to increased mortality).

In cities, the problem is even greater, as it is exarcebated by the so-called heat island effect, a phenomenon caused by changes in the reflectivity (or absorption) of the sun´s energy on the earth´s surface, with the consequence that the temperature rises in urban areas. This is because buildings, pavements and roofs tend to reflect less sunlight than natural surfaces, absorbing, retaining and re-emitting the sun´s heat.

If we continue analysing the previously identified causes of energy poverty, it is well known that in Spain there is a significant number of buildings with low energy performance. This is either because of their low efficiency in passive terms (the thermak envelope is not adequately insulated and that involves significant losses in winter and thermal gains in summer), or due to the low performance of the heating and cooling systems. It is that, as a whole, buildings are responsible for 40% energy consumption in the EU, and 36% of greenhouse gas emissions, so it is necessary to place a particularly important focus on the energy retrofitting of buildings already built.

An important advance in this sense comes from the hand of the recently approved Law on the Quality of Architecture (Ley de la Calidad de la Arquitectura), which aims to guarantee the quality of architecture as a good of general interest, and responding to social, environmental and revaluation issues of architectural heritage.

With respect to energy prices as a cause of energy poverty, the Russian invasion of Ukraine has cause an increase in energy prices not only in Spain but throughout Europe, specifically fossil fuels. As the recent United Nations report on the Global Impact of the War in Ukraine: Energy crisis points out, this increase in energy prices is accelerating the cost-of-living crisis, and maintaining the vicious cycle of constrained family budgets, increasing food and energy poverty, and increasing social unrest. This crisis is having a deep impact on vulnerable population in developing countries. Although during the two years of the pandemic energy market experienced great volatility in prices (due to reduced demand), the war in Ukraine has affected the supply of fossil fuels and the market in general, in which Russia is the main exporter of natural gas and the second exporter of oil.

What can world leaders do in the face of this rapidly changing situation?

All this leads world leaders to rethink their energy policies and plans. Well, while in the short term, countries must first seek to manage energy demand (new technologies, behavioural changes in energy consumption patterns, support from passive systems, etc.), medium and long-term measures for aligning with the Sustainable Development Goals, as well as with the Paris Agreement, emphasizing the use of renewable energy sources and the need for climate/energy resilience. In Europe especially, this may also be an opportunity to direct efforts towards the goal of becoming the world´s first climate-neutral continent by 2050.

What we do from CARTIF?

From the CARTIF Energy and Climate Policy area we work to help the different public administrations in the development of plans and strategies for adaptation and mitigation against climate change, such as the plans framed in the Covenant of Mayors where, in addition to taking measures to mitigate climate change and adapt to its inevitable effects, the signatories commit to providing access to safe, sustainable and affordable energy for all, thus helping alleviate energy poverty.

CARTIF, together with GEOCYL Conultoría S.L., is currently developing the Sustainable Energy and Climate Action Plan of Logroño and among other research projects it is worth highlighting the NEVERMORE project, where we work on the development of methodologies and tools for the evaluation of measures of adaptation and mitigation and various scales, which serve as references for politicians when defining their climate and energy strategies.

Quantum Computing is not science fiction

Quantum Computing is not science fiction

For many science fiction fans, quantum computers are those gadgets than can make everything and that they are installed as on-board computers in spacecrafts or they appear as laptops of reduced size and sophisticated aesthetics. For many of those that aren´t fans of the genre, quantum computers don´t even ring a bell. In any case, common to both groups is that mostly didn´t think this computers are real.

Reality is that quantum computers exist and they are in use. It is true that this computers are far from being the all-powerful machines science fiction portraits, and even less are tiny and portable devices that we can use in our day a day.

Quantum computing computer
Source: Fuente: https://learngerman.dw.com/es/ibm-crea-el-ordenador-cu%C3%A1ntico-superconductor-m%C3%A1s-potente-de-la-historia/a-59837328

Nowadays quantum computers are freezers of an adult size that hang up from the laboratories roof, with a eye-catching appearance: horizontal platforms with a lot of gold cables. The reason of its curious design is the instability of these computers. Due to their quantum nature, these computers are affected by all type of disturbances, from little seismic movements to electromagnetic waves such as radio waves or of telephones. Moreover, these computers function well only when they work at almost 0 kelvin, with just enough energy for a single electron to be able to move per quantum chip.

The characteristics of these computers, joint with a huge investment in their construction, makes very difficult that nowadays we have an own Personal Quantum Computer as we have PC´s. But far from discouraging, even with these disadvantages, quantum computers are in use thanks to remote control platforms. They exist software development kits1 with repository of algorithms (between them, machine learning algorithms and solvers of optimization problems), development tools of quantum circuits/algorithms, quantum simulators and access to quantum computers of different characteristics. In addition, bibliography and tutorials for the use of these tools are even increasingly prolific.

The increase of the use of quantum computing is due to the increase of public and private financing in sectors such as telecommunications, mobility, banking, cryptography or the science of life2. From the European Commission , is expected and investment of a billion euros dedicated to research projects in this field for the years 2018-2028. Until mid-2021, they have been supported more than 20 projects with a financing of 132 millions 3.

In particular, in Spain, the Council of Ministers approved a grant of 22 millions of euros to boost the field of quantum computing in 2021 with the project Quantum Spain, project with an estimated investment of 60 millions to 3 years. In addition, it arrives to Barcelona the first quantum computer in our country.

Although the order should have be the other way round, after all these figures of investment in the development of this technology, we wonder why there is so much interest in quantum computing. The answer is that these computers allows the resolution of impossible problems to solve for traditional computers. Moreover, due to their different functioning, they are able to perform operations in a much faster and efficient manner.

Do you know that all current cryptography is based on the inability of today´s computers to solve some mathematical problems? On the other hand, a quantum computer completely developed it wouldn´t have those problem. It could, for example, decode your bank account number and access to your savings. Or also enter into the pentagon and decode all type of secret documents. But don´t worry, for better or worse, quantum computers are yet far from this development level.

Another example of its usefulness would be the control of the switches of an electric network, when you want to determine the configuration that provides minimum losses together with a guaranteed supply of all loads in the network.

In general, quantum computers are useful in any control and logistic problem with binary and large variables.

It is clear that far from being science fiction, quantum computing is a reality that is becoming increasingly evident in academic and professional circles. Far from being the on-board computers of a spacecraft or the processing core of a laptop or similar, its presence has increased tremendously in recent years, and is expected to increase even more in the next 10 years. It is therefore important for researchers and scientist to become familiar with these new technologies as soon as possible.


1 https://qiskit.org/

2 https://www.capgemini.com/insights/research-library/quantum-technologies/

3 https://digital-strategy.ec.europa.eu/en

Why Central Asia has become a hotspot for Europe?

Why Central Asia has become a hotspot for Europe?

In 2020, the European Commission launched a Research proposal (or “topic”) with a budget of 10 million Euros that aimed at the development of innovative and sustainable mini-hydropower solutions in Central Asia.

What makes this remote part of the world special for the European Commission to fund a project there? Central Asia is a geographic pivot of Eurasia and encompasses the five ex-Soviet republics of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. It is one of the oldest inhabited areas and as such has witnessed rich culture and traditions such as the ancient Silk Road. Landlocked, it is an area of great energy and mineral resources. Specifically, according to a 2019 Report by the United Nations Industrial Development Organization, Central Asia has the second largest potential for Mini-hydropower generation in the world with 34.4 GW, and it is only behind Eastern Asia (China, Japan, the two Koreas and Mongolia) with 75.4 GW. However, to date, less than 1% of this potential has been exploited, which means that Central Asia is the region in the world with the lowest percentage of SHP development. Therefore, it seems clear that behind this “topic”, it is the Commission´s interest in opening new markets for the European mini-hydropower industry.

What are the main barriers that are preventing the development of the sector in Central Asia? We find a wide range of political, economic, social, technological, legal and environmental implications. There are common problems as the lack of information, the lack of financing from the private sector, or the absence of legal incentives. Moreover, some Central Asian countries have to deal with extreme weather conditions as for example, in high altitude regions where streams are likely to freeze in winter. In addition, it is crucial to consider the concept of a cross-border Water/Food/Energy/Climate nexus with a view to the future in order to avoid ecological disasters such as that of the Aral Sea, which continues to dry up due to unsustainable cotton exploitation.

The Hydro4U project was the winner of this call from the European Commission and began its journey in June 2021 with an expected duration of 5 years. Led by the Technical University of Munich, the rest of the consortium is completed by European turbine manufacturers such as Global Hydro Energy, entities from Central Asia such as the International Water Management Institute or technological centers such as CARTIF, which is leading the replication activities. Within the framework of the project, two new Mini-hydropower plants are being developed with designs adapted to the conditions of the region, and which will radically reduce planning, construction and maintenance costs, without compromising efficiency. The plants will be installed in two selected sites in Uzbekistan and Kyrgyzstan.

As for CARTIF, a key point of the work we are carrying out is the development of a replication guideline tool oriented to future investors or public authorities to support decision-making of new Mini-hydropower projects in Central Asia. The tool will be based on a computational model integrating Geographic Information System (GIS) mapping and statistical data. The tool will be implemented at river basin level, and will be applied in the two main rivers of the region: Syr-Darya and Amu-Darya. The tool will consist on several interactive modules, aiming to (1) visualize the total sustainable hydropower potential and installed capacity, (2) simulate Hydropower generation scenarios considering Water-Food-Energy-Climate Nexus constrains, sustainability of resources and socio-economic impacts and (3) provide technology recommendations as well as lessons learnt related to the implementation of new hydropower projects.

The guideline replication tool will be released by the end of 2025, and in CARTIF we are currently working on defining the sustainable hydropower potential as well as on the Water-Food-Energy-Climate Nexus model at the basin level that will allow us to simulate future generation scenarios sustainable with natural resources.


Stay informed of the progress of the project in the News&Events section of the Hydro4U webiste, as well as on its social netowrks: Twitter and Linkedin.

From Apollo 13 to the Digital Building Twins

From Apollo 13 to the Digital Building Twins

“Houston, we`ve had a problem”

This phrase, which is now part of history and sounds familiar to most of us, even if we belong to a different generation, was used by the astronauts on board the Apollo 13 spacecraft after an oxygen tank on board explosion. This happened two days after the start of their spatial mission to land on the Moon, which had been launched on April 11, 1970. It was watched by millions of people around the world for days to find out what the destiny of the three astronauts on boards the spacecraft would be. Meanwhile, NASA worked against the clock to generate a digital replica using computer-controlled simulators that would replicate the conditions that were occurring in space. This model, which was true to reality, allowed them to predict how the spacecraft would behave in space in order to find the most appropriate solution to bring the crew back. This could be considered as the first approach towards the concept of Digital Twin.

There are many different definitions of the concept of Digital Twin, one of the first being given by Michael Grieves, an expert in Product Lifecycle Management (PLM). The definition of Grieves was focused on the virtual comparison between what had been produced with the previous product design (produced vs designed), with the aim of improving production processes1. The field of application of Digital Twin is very broad, as are the possible definitions. In general terms, we can consider a Digital Twin as a digital representation of a physical asset, or a process or system, from the real physical world.

Digital twins are based on their fidelity to reality, to the physical world, allowing us to make future predictions and optimisations. The intention is that both ecosystems, that of the physical world and the ecosystem of the Digital Twin (with the representation of the virtual world), have a co-evolution with each other. That is, they are affected by each other in a synchronised manner. This is possible because both models are automatically connected in a bi-directional way. When there is only the automatic connection in a uni-directional way, and that would go from the real model existing in the physical world to the digital model of the virtual world, we cannot call it as such a Digital Twin. For these cases it would be called Digital Shadow. A digital model by itself could not be considered a Digital Twin if there is no automatic connection between the physical and the virtual world. The use of Information and Communication Technologies (ICT) together with Artificial Intelligence (AI) techniques, including Machine Learning (ML), allow the Digital Twin to learn, predict and simulate future behaviour to improve its operation.

And all this Digital Twin thing, for what’

The use of digital twins can be used in numerous fields, for example in industrial manufacturing lines, to improve production processes, or aspects such as energy and environmental sustainability, fields in which projects such as ECOFACT are currently working. Another use of digital twins could be their applications in Smart Cities, which could improve road management, waste collection, etc. At the building level, its application can be useful both at the tertiary level (those buildings dedicated to the service sector), for example an airport, where it could be used to predict and manage the building more adequately based on usage patterns associated with scheduled air traffic. It is also useful in commercial or industrial buildings, focusing in this case on the building itself, and not on the production line mentioned above. At the residential level, the Digital Building Twin (DBT) could also be of great use to us, as we could predict the thermal behaviour of the building, associated with usage patterns, in order to improve the thermal conditioning of the indoor environment and minimise the energy consumption, among other options.

CARTIF has been working for some time on the creation of Digital Models of building based on BIM (Building Information Modelling), for different purposes, such us improving decision-making when carrying out deep renovation buildings projects. In this case, the use of BIM is intended to achieve a more appropriate renovation, and to reduce the time and cost in this renovation projects, with projects such as OptEEmAL or BIM-SPEED. The use of BIM models would function as a facilitator for the integration of the static (Physical world) and dynamic (logical and Digital world from IoT-Internet of Things network data) systems of a building. In addition, the use of BIM provides control over all phases of a building’s life cycle, from design, construction, commissioning of systems, the operation and maintenance phase, as well as possible demolition.

linking the physical and digital world through BIM-based diigtal tein
Concept of linking the Physical and Digital world through BIM-based Digital Twins

The challenge ahead of us in the coming years, focused on achieving climate-neutral cities that are more sustainable, functional and inclusive, suggests that the use of digital twins will be increasingly used in these areas, thanks to the benefits they can bring.


1https://theengineer.markallengroup.com/production/content/uploads/2014/12/Digital_Twin_White_Paper_Dr_Grieves.pdf

The spanish position at the Climate-Neutral and Smart Cities Mission

The spanish position at the Climate-Neutral and Smart Cities Mission

As already mentioned in other posts, climate change and the degradation of the environment is an existential threat and one of the main challenges Europe and the rest of the world are facing nowadays. Acting in a pretentiously ambitious way, the European Commission decided at the end of 2019 to launch the EU Green Deal that looks for the transformation of our continent into a strong and competitive economy, with the mandate to be efficient in the use of available resources and whose final objective is being the first continent with net zero carbon emissions in 2050. That is to say, European citizens must be able to avoid emitting to the atmosphere, before 2050, all the greenhouse gas emissions that our territory is not capable of absorbing.

This ambitious transition should guarantee that the economic growth generated by this activities isn´t associated to a bigger use of resources. This means changing the historic paradigm of economic evolution whereby phases of economic growth have been always accompanied by a bigger energy resources and/or raw materials use. Furthermore, solutions must follow a just transition principle, in a way that nobody or no place is left behind, favoring therefore the weakest or disadvantage in case it is necessary.

In this framework, and in parallel to this global initiative, it was launched the Climate Neutral and Smart Cities Mission of the European Commission, as one of the most visible instruments to reach this goal due to its exemplary nature. One of the objectives of this platform is that at least 100 European cities can achieve this pretended climate neutrality goal 20 years in advance to the rest, so that they can act as innovation hubs for the rest of the cities to come. The first contact of the cities with this cities mission was through a volunteer commitment, formalized as an Expression of Interest that was intended to pulse the motivation of cities with this so ambitious commitment. The result of this open call couldn´t be more promising. The impressive answer, mobilizing 377 cities that showed interest in participating in the initiative assures, at least, this motivation and commitment of our cities with this ambitious challenge. Focused in Spain, the unique requirement applicable to our country was that applicant cities have to count with more than 50,000 citizens. In the selection procedure, the unique selection factor was to count on with at least one city from each member state (27) among the 100 cities selected.

Source: https://erticonetwork.com/eu-mission-on-climate-neutral-and-smart-cities/

As expected from previous experiences, in Spain not only the mobilization has been impressive, but the results as well. Barcelona, Madrid, Sevilla, Valencia, Valladolid, Vitoria and Zaragoza have been selected by the Climate Neutral adn Smart Cities Mission of the European Commission among the total 112 selected cities (100 EU and 12 from the associated member stataes). That is to say, 7% of the selected cities are Spanish cities. Moreover, they will be supported by NetZeroCities project (in which CARTIF takes part among other Spanish partners such as UPM and Tecnalia). The first step of this transformation consists on the development of the so-called Climate City Contract, a commitment of the Municipal Government with the European Commission but more important, with their citizens, accompanied by an action plan and financial plan.

The challenge for these 7 cities is tremendous. Considering a review of Material Economics, it is considered that the transition through climate neutrallity in 100 European cities would have an approximate total cost of 96,000 million euros. The Cities Mission counts only with 1,000 million euros for all the research programme. That is to say, arpproximately only 1% of the funds will be available from the Mission.

So, through public-private partnerships up to the 99% of the remaining funds must be leveraged, a huge challenge. The 7 Spanish cities, have been organized in the so-called Spanish mirror group of the cities mission (Comunidad de Transformación de Ciudades, CitiES 2030). This group of 8 cities ( the 7 selected cities plus Soria) have signed with the Ecological Transition and Demographic Challenge Spanish Ministry the commitment of working together towards climate neutrality. Therefore, it is now time to give shape to all these good ideas as solid commitments of financial support, aligning European, national, regional and local initiatives so that the necessary resources can be made available to local innovation ecosystems to take the first steps of such a transformation.

We need that good intentions are transformed into tangible programs. And we needed them now if we want to have chance to reach the commitments with which our cities have committed themselves. We shouldn´t leave them alone.