Extracting the juice from energy

Extracting the juice from energy

‘Energy cannot be created or destroyed, it can only be changed from one form to another’. This is the most commonly known formulation of the First Principle of Thermodynamics. However, we often forget that energy is degraded to a greater or lesser extent when it undergoes any transformation in the real world. Consequently, the quality of it is not the same for every of their possible forms and neither it is the level of usefulness for a given process or application.

There are evident differences between the energy flow of 1 MWh of heat at 90 C produced by a biomass boiler and 1 MWh of residual heat at 40 C coming from the industrial activity in a factory. The first one can supply numerous applications (space heating, domestic hot water supply, etc.) while the second one cannot be directly used for almost none of these uses and it is often considered as losses rejected to the environment.

The ‘guilty’ agent that causes such difference is exergy. Exergy is a term of renewed relevance these days among the concerns of engineers, technicians, policy-makers, etc. which represents the fraction of an energy flow capable of producing work, of producing a useful effect. In other words, exergy is the ‘juice’ that we really should extract from energy.

Residual heat coming out from the factory (although to a lesser extent than that one produced by the biomass boiler) also attains such potential, and wasting it involves luxuries that our society cannot afford.

In this sense, how we use energy in buildings, industries, etc. should address two main challenges: (i) producing more efficient energy transformations that will minimize its degradation, and (ii) exploiting exergy fluxes contained in low-grade energy forms that are otherwise rejected.

In CARTIF, we develop our activity in line with these objectives through our participation in different R&D projects.

One clear example of this is the LowUP project (‘Low valued energy sources UPgrading for buildings and industry uses’), leaded by the company ACCIONA and where our research center plays a remarking role, both collaborating in the leadership of different tasks as well as providing our technical experience in simulation, control, monitoring and instrumentation of energy systems.

The LowUP project is developing 3 efficient alternative systems to supply heating and cooling for building and industries, based on the use of renewable free energy and heat recovery from low-grade residual energy sources that are currently wasted. The 3 systems will be tested through 4 demonstrations in relevant environments. It involves the participation of 17 diverse partners from 7 countries seeking for the improvement and integration of several individual systems for energy production, storage and final use. As a result, these technologies will contribute to significantly reducing CO2 emissions and primary energy consumption thus creating greater energy efficiency in buildings.

After 6 months since the launch of the project, we hosted in our premises the first General Assembly of the LowUP Project, which turned to be a complete success. During the meeting, the partners presented the first advances, focused on the detailed revision of integration designs, the definition of requirements for operation, control and monitoring, as well as those first technological developments and prototypes.

Therefore, from CARTIF, we encourage all of you to follow our steps and do your bit to keep extracting the ‘juice’ from energy, without giving up trying to catch even that last tiny drop 😉

About recycling, celebrations and children

About recycling, celebrations and children

Last June 15 was a double celebration day in CARTIF. On the one hand, we celebrated the 25th Anniversary of the LIFE Programme, the EU’s funding instrument for the environment and climate action. It has passed 12 years for us since the first time we applied our first project to this call, and since then, we have participated in 20 projects, most of them related to the concept of air quality, circular economy and environmental footprints. We detail our on-going projects here.

CARTIF has never been the only beneficiary of these projects. The collaboration with many other entities is behind all of them and, that day, we were lucky for having several adventure partners at our headquarters, which made the celebration much more productive in terms of networking. Thanks from here to all of them!

And with 20 projects developed in 12 years … what have we learned?:

  • These projects have always the same three-phase sequence: proposal, project and post-project and all of them deserve the same attention and efforts.
  • (Taking advantage of the fact that LIFE program is not hearing now) The equation replicability + long-term sustainability + impacts is the key point which can make that this year your proposal wins.
  • And we have realized that we are a great team in CARTIF!

On the other hand, LIFE COLRECEPS project also celebrated its final conference, presenting publicly what we have achieved after 45 intense months of implementation, involved in the exciting world of expanded polystyrene.

Do you remember what we told you about recycling plastics some time ago? Until now, the recovery process for this waste was mechanical. One method is pressing the waste for briquettes manufacturing and ship them to China (think about the high environmental impact of this transport). The other is by grinding to reuse only 2% as part of new products. With this project, we have implemented a new recycling technology (unique in Europe) that allows valorising 100 % of the waste and obtaining new grit of EPS, suitable for use it in the manufacture of new plastics products used in the packaging sector. So, we achieve closing the life cycle of this plastic waste.

In addition, we have been able to develop a comprehensive database about the generation of this waste in Valladolid (202 t/year are produced!) and we have become aware of the difficulty in its quantification because, even today, asking companies how many waste they produce is a no-no.

Tuqueplast and Grupo Dia are the partners that have reached the end of the project beside us, sharing some issues during the execution. The implementation of the pilot plant in Turqueplast facilities has given us some headaches but during the workshops carried out with children, we have laughed a lot:

Call him Pepito, 7 years old, in response to the question “do you know in which recycling bin we should put into plastics?” he told us “of course! where my mother says!“).

Alicia Aguado & Laura Pablos

When the historic buildings talk (II)

When the historic buildings talk (II)

In a previous post the social and economic importance of heritage conservation were already described. Also we promised that on successive posts we will go into more detail describing the three main aspects that need to be monitored to ensure such conservation. Refreshing your memory, they were:

  • Relative humidity and temperature.
  • Lighting (natural and artificial).
  • Contaminants.

As promised is debt, in this post we will focus on the first point (be patient, we will talk about others further on), which makes us to face the heritage “bad boys”. Relative humidity and temperature are very damaging in the effects they can cause on the materials of which historic buildings are made of. Taking advantage of Physics, relative humidity is a very useful indicator of the water content in the air (vapour), and, on the other hand, temperature indicates the level of kinetic energy (movement) of the molecules of the air.

Both parameters vary according to the local meteorological conditions, the human actions and the conservation state of the historical buildings. This means that the atmosphere surrounding the historical buildings consist of a greater or lesser amount of water vapour at a certain temperature, definitely influencing the physical & chemical stability of the materials of which they are built on, or even of which the objects inside are composed.

In this sense, it is not negligible the effect caused by people, not only by our increasingly demanding comfort requirements, but by the number of visitors. We can influence the relative humidity and the temperature in such a way that inadequate values are reached. The effects of people are added to those of the local climate (more or less wet or warm), to the assets by itself (watertightness and ventilation capacity), to the derivatives of the proximity of heat sources (heating, sunny glass surfaces, old artificial lighting systems), the proximity of cold sources (external walls or air conditioning systems), as well as sources of humidity (leaks and floods).

The main factor to be controlled because the risk of direct deterioration that could originate is just humidity. The amount of water vapour in the air results in dimensional changes such as the well-known expansion and contraction of wood, making fractures and cracks when strong fluctuations happen. In addition, extreme relative humidity values cause softening or drying of organic materials such as adhesives and binders. But it also affects the stability of inorganic materials, such as metals, accelerating the corrosion processes, especially in the presence of salts. In poorly ventilation and dirty conditions, high values of relative humidity will cause the proliferation of living organisms causing biodeterioration (from microorganisms to rodents … Disgusting!). Even health problems as shown in the image.

Conversely, the temperature accelerates the chemical reactions and favours the biological activity. It contributes to the softening of waxes and adhesives and the loss of adhesion between different materials, such as enamels.

Perhaps reading all this causes some discomfort (and even itching …). But, what can we do to prevent these adverse effects? The answer is as simple as reasonable: just avoiding too high or too low levels of temperature and relative humidity, ensuring the highest possible stability

Following the indications of the IPCE (Spanish Cultural Heritage Institute, dependent on the Ministry of Culture), which establishes the National Preventive Conservation Plan (PNCP), the evaluation of risks derived from the microclimatic factors of which we are talking about, three aspects must be monitored:

  • Extreme levels of relative humidity and air temperature.
  • The magnitude and speed of fluctuations in relative humidity and air temperature.
  • The proximity of sources of humidity and heating or cooling emission sources.

A wide range of sensors is available on the market to monitor temperature and humidity, either continuously or timely (see image). Indeed, it is necessary to know how to properly treat, interpret and integrate the data they provide.

What is not so frequent is using alternative methods to evaluate the effects of moisture on the materials of the built heritage. Even before these appear and the remedy is worse than the disease. CARTIF is a pioneer in the use of laser scanners to make this assessment. A recent article published in the prestigious international journal Studies in Conservation, together with the developments carried out for the European research project INCEPTION show that while 3D documenting a historical building, the level of humidity present in a known type of material could be registered in parallel. A trustworthy 2×1 to take into account in the minimum conservation expenditure times we live in. The cloister of the Cathedral of Ciudad Rodrigo (Salamanca, Spain) has been the choice for on-site validations.

An important example that gives account of the scope of applied research in cultural heritage by a technology centre within a sector where it still takes more than expected that not so new technologies to be of daily use.

Efficiency Wars (Episode V) – The ROI strikes back

Efficiency Wars (Episode V) – The ROI strikes back

Watch out, the game might not be worth the candle.

In my previous post, I explained how beneficial could be for a factory to disaggregate (by direct measure and not by estimations based on nominal values) the energy consumptions of the factory between the different lines, machinery and systems that compose it. Jedi jokes aside, the fact is that such energy disaggregation is an example of the well-known rule “measure to know, know to control and control to improve.” And down to a more practical approach, the availability and study of such information will allow:

  • to map the energy consumptions within the factory
  • to visualize, through a simple pie chart, the energy contributions of the different elements.
  • to set up the priorities about what zones or machines must be modified or replaced due to their low energy efficiency.
  • to compare the energy efficiency between the different lines of a factory.
  • to compare the energy costs of the different products manufactured in the same production line.
  • to detect inappropriate consumptions due to devices’ malfunction, or sub-optimal working protocols.

Ok, let’s suppose we have already convinced the factory managers of the convenience of measuring to improve and doing it through the disaggregation of consumption. How do we start?

The most obvious approach would be to monitor the energy consumption of each machine with its corresponding sensor or meter. For electricity consumption, the installation of a network analyser will be required in the electrical cabinet where the electrical protections associated with the equipment are located. This installation, as long as there is available space in the corresponding cabinet, usually would require stopping machines for a few minutes. In the case of machinery whose energy consumption is natural gas, things get more complicated and expensive. Here it will be necessary to saw the gas supply pipe to install the new gas meter. The safety requirements and verifications of the new weldings will require a 24-48 hours supply interruption and machinery stop.

In addition, there may be machines or equipment that require a significant consumption of compressed air or heating (or cooling) thermal energy in the form of hot (or cold) water. In these cases, the specific meters must be installed in the supply pipes of the corresponding services.

In any case, formerly, the meters used to incorporate a mechanical (or electronic) mechanism of counting and accumulation. Periodically, the assigned worker would record their readings in the corresponding logbook. The mentioned readings would be later introduced manually into the computerized cost management system. However, nowadays, this approach is obsolete since, like any manual data collection process, it is costly, inefficient and leads to multiple errors. In other words, it is not only required to install the meters, but these models must be equipped (and all industrial models comply) with a communications module that allows the measured data to be sent to a computerized database storage system. It will also be necessary to deploy a new communications network (or extend the existing one if applies) to communicate all new sensors installed with the computer system that will periodically record data on energy consumption.

This type of consumption monitoring is known as Intrusive Load Monitoring (ILM). Its main advantage is the precision of the results, but its great disadvantage is the high expenses that it entails. In factories where consumption is highly distributed among a multitude of machines, the cost of equipment and installation of an ILM system can be a great investment compared to the annual cost of energy consumption in the factory.

It should not be forgotten that the purpose of a energy disaggregation system is to help reduce energy consumption and therefore the cost associated with such consumption. Obviously, it is not possible to precisely predict the economic savings that the energy disaggregation will produce. With regards to this, it is usual to use ranges, based on previous experiences, with the most and least favourable values. No matter how wide the potential savings are, if the initial investment is unreasonably high, the corresponding Return on Investment or ROI rates will be above any acceptable threshold considered by the relevant Chief Financial Officer.

To be continued…

Think green

Think green

We are opening this post providing a written record of we are not sponsored by a well-known beer brand. We dare to make you a direct request because we would like to urge you to do exactly what the title says: think green.

At the end of last year, Pantone® company (an authority in the field of color) chose the Greenery as the 2017 color of the year and, with a little foresight, we have realized that this color is being applied in a multitude of fields that go beyond fashion or decoration trends.

Can you imagine it? Look at these examples:

Technology is also green. Some time ago, we explained you the “re-naturing of cities” concept and the importance of developing actions inspired by nature to deal at environmental challenges in cities in the same way as the nature would do it. CARTIF already has an on-going project in this regard and another one is starting (do not forget its name: Urban GreenUp). Both imply that, in Spanish cities such as Valladolid and Alcalá de Henares, green corridors, vegetal paths, green walls and pollinator’s modules are coming to stay. This fact brings us to ask you strongly that, if you begin to see technological solutions based on nature within your city, take an interest in them from a positive point of view, we would not like to hear you saying “what the hell is going on with this beehive in the middle of my street?”.

Psychology is also green. We encourage you to know, embrace and apply the concept of ecological intelligence. “This concept is challenging our ideas about living green. With the book “Ecological Intelligence”, Daniel Goleman calls on all of us to think beyond terms like “organic” “recycled” “fair trade” and to pursue a deeper, more critical understanding of how the products we buy, use and discard affect the environment. Convinced that information is the tool we need for real reform, he offers a few lessons to get us started.” Daniel Goleman is an internationally known psychologist and, in our opinion, his concept sums up perfectly the importance of looking at nature to encourage sustainable development, which is the development that meets the needs of the present without compromising the ability of future generations to meet their own needs.

Big multinationals tell us they want to be green. And we would like to think that they really want to be green. Our anticipation is very high with the latest news about Apple’s 2017 Environmental Responsibility Report. They have revealed that they are going deeper to pioneer a closed-loop supply chain, where products are made using only renewable resources or recycled materials. Moreover, an interesting advance seems to be developing in the company, a new recycling robot will be able to disassemble products and recover recyclable components of a used smartphone.

If Pantone® defines the 2017 color of the year as “a fresh and zesty yellow-green shade that evokes the first days of spring when nature’s greens revive” … do you dare to think green?

Aerial Images Treatment

Aerial Images Treatment

As you know, drones are becoming more and more used nowadays. The main reason is the decrease in its price. Therefore, taking aerial images using drones is more competitive than using other devices, such as planes, helicopters or satellites. This also allows ad-hoc measurement campaigns to be carried out, instead of using images from a data base, so the use of more detailed images are made possible.

But, what is aerial photography and how does it work? Aerial photography is not only the process of taking photographs from the air, but also the treatment of these images. There are many variables involved in an aerial acquisition, which must be considered to ensure that the data is useful enough to obtain the desired results.

The main advantage of aerial images is the ability to see elements of the landscape, which are very difficult to see from the ground level.

Aerial photographs are taken in two basic forms, oblique or vertical, and both have different uses and applications.

Oblique: These images are usually taken at an angle, typically 45 degrees, but they can be whatever angle that gives the best view of the photographed area. The oblique image is primarily used in archaeology to take a wider context of the supervised zone and the area around it, and also to give depth. Nearly always they are taken at a much lower elevation than when are taken in vertical and its application is fairly limited as they often only work for a specific purpose. These images are taken from small fixed aircrafts, such as drones, and are perfectly suited for monitoring erosion of features and monuments over time.

Vertical: Taking a zenithal photograph over a landscape is the more usual form of aerial photograph. It is a plan view, so there is no perspective to distort the image. This also means that it is difficult to read the features of the photographed area, such as changes in height.

Applications of Aerial Photography

In Archaeology: Aerial photography is ideal for locating lost monuments, especially those that are not visible at ground level, those that are under the soil and cannot be seen on a field walk and those that can only be seen under certain conditions.

In Agriculture: Crop field reports and statistic can be delivered for farmers using multispectral image data from special devices, such as thermal cameras. CARTIF has a lot of experience using this type of devices in some R&D projects (more info).

In Climate Change studies: It’s possible to detect rivers which are drying up, the reduction of inland lakes, forests that are dying, etc. Researchers keep vital records in changes over seasons and years to track local effects of climate change and risks to local ecosystems. Localised aerial photographs are fundamental for that purpose.

In Other Earth Sciences: They can also be used to study the process of natural changes, such as variations in soil and geology over time as well as changes to the underlying ground that leads to disasters such as landslides.

Energy and Infrastructure: Mitigate business risks, accelerate pipeline planning, learn about surface composition, and predict environmental impact using the data from aerial images.

Engineering and Construction: From construction site selection and evaluation to the assessment of existing structures, this technology facilitates every step of the project.

Defense and Intelligence: Defense agencies, military contractors, and law enforcement are continually faced with new challenges. Aerial images provide an unrivalled advantage when planning strategic and tactical operations, carrying out combat missions, and developing simulations.

Disaster Response: When timeliness counts, image data provide crucial insight for disaster response efforts and insurance operations. CARTIF is involved in a project which uses this type of technology in order to accomplish these goals.

Urban development: High resolution Aerial Images has gained popularity among Planners, Developers and Engineers for small scale mapping for most urban and land development applications. Information from Aerial Photos when combined with GIS (Geographic Information System) mapping is amongst others, used for analysis, strategic planning and evaluation in urban planning. CARTIF has been working in a research line related to this topic for many years.