Big Data as one of the so called “digital enablers” of Industry 4.0 sits at the core of promising technologies to contribute to the revolution at factories where vast amounts of data (whether they are big or small) hides enormous amount of knowledge and potential improvements for the manufacturing processes.
The Strategic Research and Innovation Agenda (SRIA) of Big Data Value Association (BDVA) defines the overall goals, main technical and non-technical priorities, and a research and innovation roadmap for the European Public Private Partnership (PPP) on big data. Within the current expectations of the future Data Market in Europe (around 60 B€), Manufacturing was at the first place in 2016 (12.8 B€) and in the 2020 projections (17.3 B€), revealing a leading role played by this sector in the overall Data Economy.
With the aim to find an agreed synthesis, the BDVA adopted the “Smart Manufacturing Industry” concept definition (SMI), including the whole value chain gravitating around goods production, secondly identified three main Grand Scenarios aiming at representing all the different features of a SMI in Europe: Smart Factory, Smart Supply Chain and Smart Product Lifecycle.
To contextualize these research challenges, the BDVA association has defined five technical areas for research and innovation within the BDVA community:
Data Managementand lifecycle motivated by the data explosion, where traditional means for data storage and data management are no longer able to cope with the size and speed of data delivered.
Data Processing Architectures originated by fast development and adoption of Internet of Things (IoT) and the need to process immense amounts of sensor data streams.
Data Analytics that aims to progress technologies and develop capabilities to turn Big Data into value, but also to make those approaches accessible to wider public.
Data Protection addressing the need to ensure the correct use of the information whilst guarantying user privacy. It includes advanced data protection, privacy and anonymization technologies.
Data Visualisation and User Interaction addressing the need for advanced means of visualization and user interaction capable to handle continuously increasing complexity and size of data and support the user exploring and understanding Big Data effectively.
During a series of workshops activities, started from the 2016 EBDVF Valencia Summit till the 2017 EBDVF Versailles Summit, BDVA experts distilled a set of research challenges for the three grand scenarios of smart manufacturing. These research challenges where mapped in the five technical priority areas of the big data reference model previously introduced.
To exemplify the outcomes of this mapping, the following figure gathers the headings of the set of challenges identified and discussed by the BDVA members into the Smart Factory Scenario. The interested readers are encouraged to analyze the full set of challenges in the SMI white paper.
Challenges set initially in this first version of SMI position paper set the tone for the upcoming research needs in different Big Data areas related with manufacturing. In the Smart Factory scenario the focus is on integration of multiples sources of data coming not only from the shop floor but also from the offices, traditionally separated in Industry 3.0. Interoperability of existing information systems and the challenge of integrating disruptive IoT technologies are major trials in the area of data management. Closer to the needs of a Smart Factory, the analytics challenges are focused on prescriptive analytics as tools for an optimal decision making process at the manufacturing operations management site including the optimization trough the evolved concept of digital twin.
Ensuring the safety of workers inside confined spaces is a critical activity in the field of construction and maintenance because of the high risk involved in working in such environments. Perhaps it would be useful, first of all, to know what is meant by confined spaces. There are two main types of confined spaces: the so-called ‘open’ ones, which are those with an opening in their upper part and of such a depth that it makes their natural ventilation difficult (vehicle lubrication pits, wells, open tanks, tanks),…) and ‘closed’ ones with access openings (storage tanks, underground transformer rooms, tunnels, sewers, service galleries, ship holds, underground manholes, transport tanks, etc.). Workers entering these confined spaces are exposed too much greater risks than in other areas of construction or maintenance and it is therefore essential to apply extreme caution.
Each confined space has specific characteristics (type of construction, length, diameter, installations, etc.) and specific associated risks, which means that they require solutions that are highly geared to their specific safety needs.
The ‘conventional’ risks specific to confined spaces are mainly oxygen suffocation, inhalation poisoning of pollutants and fires and explosions. But new ’emerging’ risks from exposure to new building materials such as nanoparticles and ultrafine particles are also emerging. In addition, as research into new materials improves, there is also a better understanding of their potential negative effects on human health and how to prevent them.
The truth is that the training of workers and current safety regulations seek to anticipate risk situations before they occur in order to avoid them and thus prevent the appearance of accidents. But several problems arise: on the one hand, the regulations are not always strictly observed (whether due to workload, carelessness, fatigue, etc.) and on the other hand, there are always inevitable risks. In the case of carelessness, systems can be proposed to minimise this type of error and in the case of risks that cannot be avoided, systems can be proposed to detect them early and plan the corresponding action protocols.
It should be noted that risk situations do not usually appear suddenly and in most cases are detectable in time to avoid personal misfortunes. There are several problems: the detection of these risks is usually done with specific measurements using the portable equipment that the workers must carry, many times the workers are not controlled to access the premises with the corresponding protection equipmente and almost never a continuous monitoring of the indoor atmosphere is done.
In recent years, new technologies and equipment have been developed that can be applied to improve security in this type of environment and reduce the associated risks.
In this type of environment, an effective risk prevention system should be based on technological solutions capable of providing answers to safety aspects throughout the entire work cycle in confined spaces: Before entering the space itself, during all work inside the enclosure and when leaving the work space (whether it is at the end of normal work or by evacuation).
The latest confined space air quality monitoring systems are based on multisensorial technology that combine different detection systems to ensure the best possible conditions to avoid or reduce the risks present in the confined spaces.
Advanced data processing techniques (machine learning, data mining, predictive algorithms) are also being applied, enabling much more efficient and rapid information extraction.
In the same way, great advances have been made in access control and personnel tracking systems, allowing us to know the position of each worker and even his or her vital signs in order to detect almost immediately any problem that may arise.
Finally, it should be noted that the use of robots and autonomous vehicles (land and air) equipped with different types of sensorization are increasingly being used to determine the conditions of a site before it is accessed. This is especially useful in those where there may have been an incident: power failure, collapse, fire,… or simply because environmental conditions are suspected to have changed and the reason is unknown.
CARTIF has been working on these issues for many years now, both in safety projects in critical construction environments (PRECOIL, SORTI) and in specific systems for tunnels and underground works (PREFEX, INFIT, SITEER).
In short, the development and implementation of new specific technologies can help to save lives in such a critical environment as confined spaces.
In two previous blogs of ‘When the Historic Buildings Talk’ (2)and(3), we have described how does affect and what is the importance of monitoring temperature and humidity as well as lighting (natural and artificial) in historic buildings. To complete this saga of pernicious aspects, the turn to the pollutants is open just now.
We all know, and suffer, that the composition of the air is altered by compounds that come mainly from the use of fuels (road traffic and heating) and industrial activities. These pollutants can trigger chemical reactions in the materials that make up the cultural assets (movable or immovable), degrading them to a greater or lesser extent. The pollutants with the highest concentration in the exterior are sulphur dioxide (SO2), oxides of nitrogen (NOX), ozone (O3) and suspended particles (PM). In addition to these pollutants that “travel free” throughout the air outside the buildings, there are others to be taken into account inside them, such as vapors of organic compounds (COV), products used in conservation and restoration tasks, and even human presence.
Again, we have to ask ourselves: what are their effects? Here it is a short description of the main ones:
SO2 is related to coal combustion and to industrial activities and transportation. It causes metal corrosion, pigment discoloration, weakening of leather and acidification of paper.
Among the NOx, the nitrogen dioxide (NO2) needs to be highlighted. It comes from combustion in vehicles and in industry, and associated effects are the discoloration of pigments and the contribution to the degradation of paper and leather.
The renowned ozone (O3) is naturally present in the stratosphere. This is a good point, because it protects us from malignant solar radiation, but at ground level is linked to road traffic and intense solar radiation. It causes the degradation of natural gums and the discoloration of pigments.
PM are characterized by their diameter, distinguishing between fine particles (PM 2.5: with diameter equal to or less than 2.5 μm), and coarse particles (PM 10: with a diameter between 2.5 μm and 10 μm –keep in mind that 1 μm is one-millionth of a meter-). The fine ones affect the discoloration and dirt of the surfaces. On the other hand, coarse ones contain highly reactive compounds (e.g. residues from incomplete combustion of road traffic). The dust enters this section: apart from its obvious aesthetic impact (denotes sloppiness and lack of care) can lead to chemical deterioration, and can serve as a habitat for insects (do you get bit?…)
In general, the study of outdoors pollution is more developed and legislated than the indoors one. However, in the field of Cultural Heritage, the study of indoor air quality is very important because of the logical conservation demands. Following once again the criteria of the IPCE, which establishes the Spanish National Preventive Conservation Plan (PNCP), these are the evaluation parameters of the risks derived from the pollution to which the historic buildings are exposed:
External parameters:
Medium where the cultural asset is located (rural, urban, industrial, coastal, etc.).
Polluting sources nearby, whether of anthropogenic origin (industrial and transport processes) or of natural origin (volcanoes, fires, sea water, animal life, vegetation, etc.).
Meteorological factors such as winds and precipitations that influence the dispersion and deposition of pollutants.
Internal parameters:
Sources of indoor pollution.
Quality of the external air and location of the asset in relation to the exterior.
Waterproofing of the building, its compartments and furniture.
Distribution of pollutants by air circulation.
Already existing air conditioning, heating and ventilation facilities, as well as their use and maintenance.
And, these are the criteria that must be taken into account for the assessment of the deterioration produced by the pollutants:
The pollution damage is cumulative, so very low limits needs to be set depending on the detection ability of available devices.
The damage is determined by the dose, i.e. the concentration of the contaminant (in μg/m3 or parts per billion -pbb-) by the exposure time. This exposure time is conveniently estimated to take into account the overall effect.
Keep in mind the mutual influence between pollution and other already known factors, such as humidity and lighting.
In conclusion, the air quality inside and / or outside the built heritage defines its conservation (see Figure). Let me remind you again that CARTIF is ready to advise you, to help you and to offer solutions tailored to your needs. You can have a look to some projects: RESCATAME, SHCITY and EQUINOX. We have been innovating in Natural and Cultural Heritage for more than 20 years. At your disposal!
There are many research and innovation projects whose objective is the design and development of an electronic device, whose purpose is to satisfy main requirements of the market. In general, we look for devices with the necessary capacity to acquire information about the physical world that surrounds us and, in many cases, interact with it.
To carry out the validation of the idea, it is necessary to carry out a previous prototype that allows a first approximation of the final solution. Generally, the most complex and interesting part is the electronic design of the device. In this part, the design and development of the electronic board is carried out, defining consumption and communication requirements, selecting microcontrollers, PCB board, components, connectors, etc.
This task means to have expensive electronic design software licenses, to integrate expert electronic staff into the work team and to allocate a significant part of the project hours to its execution.
Times change, more and more hardware development platforms are involved in making these changes possible. These platforms offer the user a board that integrates the microcontroller with the circuits and basic components of communication, power, etc. Among them stand out: Parallax, STMicroelectonics, LaunchPad, Microchip ChipKIT, mbed (version of ARM to give solutions to “internet of things”).
But, if I had to choose one of these platforms at this time, I would do it for Arduino. I think he has cleverlycombined the hardware and software, generating a flexible prototyping platform, open source and easy to use, whose features are:
A hardware based on powerful boards that integrate simple microcontrollers. Its main characteristics are low cost, small size and low consumption. It is published under a Creative Commons license, a wide variety of auxiliary equipment developed by other manufacturers that support this platform is available on the market.
Open source software, based on a simple and clear development environment. That allows expert programmers to generate complex solutions. In part, this must availability of a multitude of standardized libraries contributed by a large community on the internet.
These characteristics facilitate and guarantee the integration of the new trends and evolutions that are continuously generated in the field of electronics, thus improving their features and capabilities.
Although a priori it may be thought that this platform is designed to start experimenting with electronics, its features make it a flexible and powerful tool for expert users, facilitating the development of advanced prototypes.
Therefore, these tools allow to reduce costs and design times of any technological proposal, facilitating the creation of prototypes and reducing the errors generated in its development phase. This allows the researcher to forget about the implementation at a low level and focus on the design features.
This technology has great potential for integration in several of the technological research and innovation lines with which the European Union is currently working, such as, the Internet of Things and in Factories of the future, of H2020.
In CARTIF we are aware of its importance and we have started to use these platforms as support in the development of our research work. A sample of this is the European project “SANDS”, where the Internet of Things, Social Networks and Intelligent Systems converge, and the Spanish project “REPARA 2.0”, in which new autonomous and wireless sensors are searched to be embedded in the asphalt layer of our roads.
Anti-pollution measures, speed limits, parking restrictions, even the grey sky colour, and very, very alarming data. These are the consequences of the circulation of our cars in big cities. According to the European Environment Agency (EEA), more than 13% of the polluting particles in the 28 countries of European Union are produced by transport, which supposes almost 4.000 deaths per year. Only in cities, data ensure that traffic produces the 60% of emissions to the atmosphere. How long can we continue allowing this situation?
However, not all cars are so guilty of these emissions. Only 10% of the vehicles that circulate in our streets contribute 50% of the emissions, according to experts. They are what we call “high emitters” (HE). But, which are these cars? Diesel engines? The oldest ones? The worst maintained by theirs owners? Not necessarily. A high percentage of owners of highly polluting vehicles are not aware of it. Many of them have successfully passed the vehicle inspection and even 50% of these high emitters have less than two years.
How can we find out if our car is a “high emitter”?
LIFE GySTRA project, coordinated by CARTIF, purposes identifying this kind of highly polluting vehicles and monitor continuously the evolution of empiric emissions levels to quantify the savings of emission volumes. This process will be possible thanks to a new technological development, the RSD +. For the moment, the intention is to carry out tests and collect data in order to launch a new sustainable mobility policy.
The demonstration study will be carried out in Madrid (Spain) and Sofia (Bulgaria), where the intention is to control the vehicles that circulate in both cities thanks to three RSD + devices, adapted to the requirements of the EU in terms of NO2 emission control.
The public model in Madrid (Spain) is going to monitor 700,000 vehicles per year, with two RSD+ devices. The owners of the vehicles identified as HE will be notified to proceed with car reparation. With the repair of this kind of cars, it is expected to achieve emission savings of 14.8% (CO) and 22.7% (NOx, NO and NO2) of the total volume of emissions. If only the half of the total HE is repaired it would be possible to reduce CO2 emissions up to 16Mt per year.
On the other hand, the fleet model of Sofia(Bulgaria) is going to control a fleet integrated by 150 buses continuously measured. A recent study on buses concluded that identifying 6.6% of HE and repairing them their emissions were reduced by up to 84%. This monitoring program will allow higher emission savings, and fuel savings are expected to be 3-5% for the HE.
The repair of these vehicles does not only mean environmental advantages, but it will mean economic savings and the improvement of vehicle conditions.
If the project team achieves these objectives, it will greatly reduce pollution in our cities, even reaching to avoid episodes of high pollution and the restrictions, which mean headache for citizens and administrations.
The project is designing too an emission reduction policy that includes information campaigns aimed at population, some more general and others specific to the owners of the most polluting vehicles.
The project consortium is integrated by five partners, three of them technological and two from the administration. Firstly, CARTIF coordinates the proposal; OPUS RSE is the company that will develop RSD+ technology for remote contamination monitoring; and CIEMAT, the research centre that will calibrate the equipment and perform the characterization and evaluation of emissions. On the other hand, the Spanish Traffic General Direction and the City Council of Sofia (Bulgaria) will lend their support for the demonstration study in the cities of Madrid and Sofia, respectively.
According to the United Nations, in 2014 more than half of the world’s population was living in urban areas and two third of the world’s population will be living in an urban area by 2050 being Europe the most urbanized continent (URBACT, 2015). The forecast for 2050 in this case is that the percentage will increase up to 75% (Eurostat, 2016). Besides, urban areas are engines of regional and national growth as they generate 53% of gross national product (GNP) in low-income countries, 73% in middle-income countries, and 85% in high-income countries (World Bank, 1999).
Although the concentration in cities usually supposes an increase of density and less consumption of resources, cities use two-thirds of the world’s energy and generate three-fourths of the world’s CO2 emissions (Smart Cities Council, 2013). In addition, urban areas have important drawbacks, those being waste production, carbon emissions, pollution, lack of preservation of heritage and environment, traffic congestion, etc.
The traditional urbanism has not been able to give response to the current situation and problems that have arisen in recent years in cities, due to its complexity, diversity and uncertainty. Therefore, new planning instruments are needed, such as Strategic Planning, as an attempt to address the complexity and socio-economic diversity of our cities from a multidisciplinary perspective.
According to the definition of professor Fernández Güell, Strategic Urban Planning is “… a systematic, creative and participatory process that stablishes the bases of an integrated long-term vision, which defines the future development model, which formulates strategies and actions to achieve this model, which enables a continuous decision-making system that involves local agents throughout the entire process”.
To sum up, it is a deep study of the cities, in order to understand their current state, where are we?, understanding the past so as to help us to understand the present: where do we come from?, and, finally, to define a city model or future vision in accordance with political and citizen aspirations: where do we want to go?
Why is a city strategy necessary nowadays?
It is necessary as a way to achieve the sustainable urban development, understood from the three points of view: environmental, socioeconomic and institutional, as a global and systemic approach. This is considered as the starting point for the definition of the baseline situation of the city as well as the future vision. The current city model, as well as the way of life of its citizens need to be reconsidered, and cities need to find a way to regenerate themselves, with the aim of ensuring sustainability in the medium-long term, as well as being able to meet the challenges mandated by the European Commission by 2020 or by 2030 (40% reduction of greenhouse gas emissions (in relation to 1990 levels), 27% share of renewable energy, and 27% energy efficiency improvement).
Therefore, Strategic Urban Planning has become the best instrument to tackle the challenges that cities are currently facing.
What does CARTIF do in this regard?
From CARTIF within smart city projects, we collaborate with European cities that want to reformulate their city model into a model leveraging the convergence of energy, mobility and ICT to transform European cities into Smart Cities, through the development of an integrated strategy.
As for example within MAtchUP project, we are working in the development of an integrated strategy with the cities of Valencia, Dresden and Antalya, or in MySMARTLife project with Hamburg, Helsinki and Nantes.
Aiming a wider approach, we are currently working with municipalities such as Laguna de Duero (Valladolid, Spain) for the definition of its Strategic Plan 2017-2022, which will serve as guidance for municipal interventions and policies in the coming years.