Decarbonization is the “trending topic” of terms related to sustainability, energy and the environment. It is the process of reducing the amount of carbon dioxide (CO2) released into the atmosphere. Decarbonization means reducing climate change and dependence on fossil fuels, which are precisely those that emit CO2 when burned (clear examples are fuel-oil and coal). Decarbonization implies the use of cleaner energy sources, but also the adoption of technologies and methods to protect the environment and to reduce these emissions (the so-called “carbon footprint”).
However, what does this have to do with Cultural Heritage? Well, you will be surprised for sure, but it turns out that Heritage contribuyes many important things to decarbonization: the preservation of historical buildings, the reuse of spaces, the promotion of sustainable mobility, the promotion of cultural tourism and technological innovation in the assessment and the conservation of historical assets. In other words, it turns out that offers an environmentally friendly approach to urban planning and rural development.
If we go into a little more detail, you will see that Cultural Heritage can play a significant role in decarbonization and the fight against climate change. Here we provide you five ways to do so, but I´m quite sure your are able to think of some more (please tell us):
Technological innovation applied to conservation1 of historic buildings (where CARTIF has a lot to say): here the sensitivity required by historic buildings implies the development of specific techniques and technologies, which have broader applications in reducing carbon emissions in other fields of construction and environmental management. The digitally based technical inspection, the preventive conservation and the intervention involving H-BIM avoid both ruin and/or demolition, as well as new alternative constructions, which significantly reduces the material and energy resources to be used for these purposes. Furthermore, and this is worthy of remark, the old buildings were designed and built up with techniques and materials that are inherently sustainable, taking advantage of aspects that we are “rediscovering” right now such as orientation, natural ventilation and the use of native materials.
Reuse of spaces: Historical sites and buildings can be suitable adapted for new uses and transformed into living or working spaces with a level of comfort appropriate to the 21st century, which in the medium-long term saves resources compared to the construction of new substitute structures. This reuse contributes to greater energy efficiency and the reduction of carbon emissions.
Adaptation and transcription of ancient professional techniques: historic places are examples of how antique societies adapted to environmental challenges (which have always existed) and how lessons learned in the past can be adopted today through proper understanding and technological shift of traditional techniques and uses (both materials and methods).
Promotion of sustainable mobility: The preservation of historic centres in cities increasingly promotes sustainable mobility. In fact, they were desgined to move on foot, on horseback or in wagons and carriages. Therefore, they absolutely favour pedestrian accesibility and the use of public transport instead of private vehicles. This reduces dependence on fossil fuels and decreases greenhouse gas emissions.
Development of sustainable cultural tourism: it is more than proven that sustainable cultural tourism can play an important role in the local economy and even in the region, encouraging more environmentally friendly practices such as waste management, conservation of biodiversity and the promotion of quality agri-food and crafts.
But, does Cultural Heritage really do that much? Obviously yes. Indeed, a lot. In line with the priorities of the European Green Deal and the EU´s climate ambition for 2030 and 2050, the European Cultural Heritage Green Paper emerged in 2021, where indeed it is already considered a driver of decarbonization and mirror upon which citizens see themselves as key actors in the actions needed on this regard.
Historic building and decarbonization is a bionmial over which the Cultural Heritage & Regeneration Committee of the European Construction Technology Platform has been working for years (CARTIF takes part of the Executive Board). Its latest strategic research agenda for the period 2021-2027, promptly refers to this. And it is an issue that has been deepen into recent plenary assemblies. It is no wonder when 24% of the residential buildings in Europe date back to before 1945, nearly half of them have historical value, and of this latter, 73% are located in cities, which is precisely where the alrgest carbon footprint is made.
From now on, will you see Heritage with an additional view further than cultural, religious and tourist ones? Another thing for you to know.
1 In line with UNESCO and ICOMOS usage related to tangible heritage, conservation is considered as the umbrella term to cover a range of preservation, conservation, restoration, (re)use, interpretation and management activities.
Innovation and new technologies bring forth a variety of possibilities, obstacles and unknown questions that in order to be addressed, require the formation of interdisciplinary temas that allow for the reinforcement of each professional´s skills, enriching themselves with the knowledge, experiences and abilities of others.
This is how CARTIF understands it, and it becomes even more evident when approaching Cultural Heritage through the lens of the 21st century. As an example, the department dedicated to this cahllenging yet fascinating subject is currently comprised of Industrial and Computer Engineers, Physicists and Architects. They are always opent to new additions and work closely in collaboration with professions that naturally reside in this field, such as Historians and Archaeologists. Together, they work to respond to the six fundamental pillars internationally recognized for ensuring the sustainability of Heritage in its tangible, intangible, and digital forms.
Applied and continuous R&D leads to products, processes and services that prove to be useful in the medium term for the research, protection, conservation, restoration and dissemination of cultural heritage assets. Not only with technologies, but also with corresponding methodologies, even allowing for the evaluation of their economic and social impacts in both urban and rural areas. We couldn´t study historical aspects or analyze buildings or monuments architecturally without scientifc knowledge, the devices created by engineers, or the programs developed by computer scientists.
In fact, the digitization of Cultural Heritage, whose correct technological understanding and translation was addressen in a previous blog post, has positioned CARTIF at the forefront of defining the European Union´s research and technical priorities in the field. Now, it expands with the definition of new business models that ensure the preservation of the Heritage we currently enjoy for future generations.
Nevertheless, technology and innovation must always be accompanied by directives, guidelines and recommendations that take into account the local population; policies where Heritage is truly considered an asset; and the promotion of professional training, dissemination, awareness, and education, as it is impossible to value what is not known.
That is why Cultural Heritage, far from being something static, is constantly evolving, even as a concept, and demands updated professional profiles that address everything we have discussed. It´s quite a challenge. And these profiles begin to take shape in the collaborative project we have been carrying out at CARTIF. We always consider the business perspective, the requirements of public administrations, the uniqueness and sensitivity that each site requires, and the places and people involved. It´s another way to involve and build a future rooted in the past for the younger generation.
A wood lamp emits ultraviolet (UV) light and is a diagnostic tool used in dermatology to determine whether a person has a fungal or bacterial pathology on the sking or scalp. If so, the area illuminated by the wood lamp will fluoresce, becoming apparent in different colours associated with different pathologies. Perhaps you have ever undergone this test. The doctor will have told you to close your eyes to protect your vision and the light in the room where you are he will have turned off to highlight the fluorescence. Among other possibilities, if it turned out light blue means that you have normal and healthy sking; yellow is oily skin with acne; brown is for pigmentation and blackheads; and if white spots appear, drink more water, because you have dehydrated skin.
But surely you had not stopped to think that his technique is also applicable to diagnose similar pathologies in movable cultural heritage assets made of organic materials, for example wood or resin sculptures, or paintings covered with varnishes madre from three resins. The passing of the years, inadequate conservation conditions and dirt are defining aspects in the appearance of fungi or the yellowing of varnishes, so that if sculptures or paintings are illuminated with a wood lamp, we can clearly distinguish fungal conditions, and the extent of dirt (even where they are not yet perceptible to the naked eye), or if a painting has been touched up because the yellowing of old varnishes turns fluorescent.
In the ITEHISproject a wood lamp that emitting light around 365nm (UV) and producing fluorescence around 500nm (perceptible by the human eye) has been used to inspect a statue of the Heart of Jesus from the late 19th century, validating the fungal infection (especially mold) and making evident its true extent.
A wood lamp thus becomes an absolutely effective, eay-to-use, non-invasive and economically admissible mean, even for a person like you and me, to help clean and restore our heritage. A true example of a “low-cost” technique to keep it there. But this does not end here, because further R&D is required to associate new colours with new pathologies in a moment where climate change and human globalization bring “bugs” that do not correspond to the latitudes where they currently appear. But don´t worry about that, CARTIF is already taking care of it.
“Divide et impera”, popular ancient Rome motto later attributted to the Roman emperor Julius Caesar. “Divide and dominate” or better known as “Divide and rule”, was the strategic foundation on which the Roman Empire was built (27 bC – 476 ac). Almost nothing. In line with the political and military relevance of this slogan, in the mathematical field, it gave its name to one of the eight classic heuristic strategies of problem solving, together with codification, organisation, experimentation, analogy, introduction of auxiliary elements, search for regularities and assumption of the solved problem.The others are proper notation, solution drawing, systematic experimentation, analogy, introduction of auxiliary elements, problem reformulation and way back.
The solution strategy we are talking about is based on breaking a problem into a set of smaller sub-problems, solving these sub-problems, and combining the solutions. This methodology is widely used in various scientific fields and that under different names, theorems, or methos, such as the method of integration by parts (integral calculus) or the principle of virtual jobs (strength of materials), has promoted the resolution of complex problems by converting them into multiple “easily” solvable problems.
If there is one thing that characterises the world of engineering, it is precisely this eagerness to transform problems. We have all heard the joke about how an engineer calculates the volume of a cow and how, compared to the functions of approximation to a surface and its subsequent integration that a mathematician would carry out or the performance of a physicist using Archimedes’ principle and putting the cow in a swimming pool, the engineer would give his solution by approximating the cow to a sphere.
In the field of structural engineering, the branch in charge of the design and calculation of structural elements and systems to ensure in advance an optimal structural response (safe, resistant and functional) applies the mechanics of continuous media, a super nice calculation model in the “academic” world whose application in real life is very “chunky”. That´s why we resor to the finite element method, another “divide and conquer” engineering glorification, where the strategy is to convert the continuous medium into a finite number of parts, “elements”, whose behaviour is specified by a finite number of parameters at certain characteristic points or “nodes”. This is commonly called “simulation”, although it should at least be called numerical.
Professionally, I work in this area to design “things” optimally. But when these things are sets of configurable elements or product catalogues, and we want to cover all the options to offer the best, we could talk about the need to develop dimensioning applications or system and product calculation configurators.
Well, after years working on these developments for different sectors, I can say, without fear, that dismembering a project among the different knowledge teams will be the iceberg that leaves us frozen. It seems logical to think that if we are talking about the development of a robust validation application of a configurable product, we need someone who knows the product perfectly, with all its variants and possibilities, its terminology, its meaning, its cost and even its soul, if I may say so. In the same way that we need, at this level of knowledge, someone capable of calculating and validating the product in resistant and functional terms and who knows how to transform, transcribe or visualise this numerical validation in a user-friendly platform. NO, prepare the lifeboats. A dose of reality difficult to digest for an engineer and staunch defender of multidisciplinary projects like me and of breaking down problems. NOT EXACTYL, get lifeboats ready. A dose of reality difficult to admit for an engineer staunch defender of multidisciplinary projects.
Professional experience, with blood, sweat and tears included, has improved our conception of strategy, avoiding sectorial strategies that push the global objective, and ultimately the product, to the background. And to understand this, there is nothing better than the well known expression “cobbler to your shoes”. Do you know what I’m talking about, not yet?
However the presence of different team members’ roles in this kind of work, make it impossible to detect errors or incoherencies derived from lack of conception and lack of understanding cooperation between professionals. It is unavoidable. Architects and engineers do not speak on the same scale, for example. In addition sectoral strategies relegate the functions of the “expert of the product” to setting the norms, rules or ranges of consideration. Which seems quite illogical since the expert is separated from the course of the project. The question is how do we detect failures? and when? it may be even more important. Everything points to final report. So we work such as Titanic’s valiant musicians and we’ll see how the ocean of corrections treats us. I’m talking about that ocean like a succession of final versions succession in which we will be submerged by unforeseen failures and with the corresponding increasing final workload. Now we do know what we’re talking about, don’t we?
All this, without going into responsibilities which it have also been diluted. To blame are those who…If the person or persons responsible had bid me do so, I might have…
In this sense it is impossible to offer a service aimed to set up validation of configurable products application development if it is not a completely calculation project. So Turnkey project or I hope you are good swimmers.
However, trainings should also be conducted by people that are knowledgeable about the subject matter or the product, better even than costumer who can have been in the business for more than 30 years. We must become experts and think. It’s the only way to cope successfully such a service and that under a holistic approach where each part must be considered as one. So we avoid misinterpretations, unreasonable casuistic, excessive computing (no scale-resolving simulations) and cannot effectively communicate (the customer never knows what he wants until you show it to them). I want to stand out with it the necessity of acting “in” the moment and “for” the future.
For those interested in these possibilities… where are we going to find someone who wants to learn? To find someone who wants to ask questions? To find someone who can improve the product and performance for your company, and have the ability to do so. I am talking about to use experimental or scientific techniques, with computational capacity and that you can also implement it on a platform so that its usability improves, for example, the competitiveness of the different technical and sales departments of other companies? Can you imagine pressing a button to get the weekly job of a technician?
Cultural heritage, in the broad sense, is the legacy received from our ancestors, which becomes the testimony of their worldview, their ways of life and their way of being, having to be passed down to future generations. Knowing the cultural heritage is to know the identity of a specific society and let me dare say that, without doubt, it even helps us to discover ourselves.
When we are traveling to a certain place to “pick up” that knowledge, but being far away from stereotypes and trivializations, we are doing cultural tourism. Despite the fact that this type of tourism is sometimes controversial (fundamentally due to how resources are managed), it is unquestionable that it has nothing to do with sun and beach tourism. Even though Spain is the second country in the world for highest quantity (and quality) of cultural (and even natural) heritage, it surprisingly continues to present and sell ‘sun and beach’ tourism as almost exclusive. Cultural tourism represents a great opportunity for local development, decisively contributing to conserving and making heritage sustainable, since it has already been proven that generates resources and employment for the community. But for this to happen, it must be oriented not only for the benefit of cultural heritage in itself, but also for the people who inhabit the place where it is located. Only if the inhabitants are really an active component in tourism development, can the spark arise between heritage and cultural tourism, and then it will end up being a well-matched marriage beyond convenience.
The fact is that since the 1970s, when UNESCO launched the Convention on World Cultural and Natural Heritage, together with proposals to conserve and promote it, cultural tourism has experienced huge growth throughout the world, but especially in Europe, where it became really important since the 1980s. In fact, currently there are 1121 declared World Heritage Sites; the majority of them spread around three countries, two of which are European: China (55), Italy (55), and Spain (48).
Europe is a key cultural tourism destination thanks to an incomparable cultural heritage that includes museums, theatres, archaeological sites, historical cities, industrial sites as well as music and gastronomy. According to CARTIF’s analysis in 2021 for theTExTOUR project, it is estimated that cultural tourism accounts for 40%of all European tourism. This is generating 5 million direct jobs and contributing 143 billion Euros per year to the EU economy. Indeed the EU promotes a balanced approach between the needs to boost growth on one side, and the preservation of artefacts, historical sites, and local traditions on the other.
Pandemics apart, it is estimated that cultural tourism will remain one of the key markets in Europe. Interestingly, cultural tourists spend 38% more per day and stay 22% longer than other tourists. Germany is the largest European source market in terms of market size, followed by the United Kingdom, Italy, France, the Netherlands and Spain. Trends show cultural tourism is slowly changing into creative tourism. With it, tourists actively participate in cultural learning experiences, getting in touch with local people and culture.
Cultural tourism originally was primarily driven by the interest of the baby boom generation (born late 1950s – mid 1970s) to visit major cultural sites and attractions, such as museums and monuments, often travelling in groups. The generations after them: generation Y (millennials: born 1980–1995) and generation Z (centennials: born 1995 – 2010), drive the demand for more authentic, unique, small-scale and personal experiences, plus the demand for popular and everyday culture. For them it is more important ‘to be’ somewhere, rather than ‘to go’ somewhere. These generations prefer to travel on their own, thus flat rental platforms and personally-driven services at local level are growing and growing.
Of course technology has made a substantial change in the habits of travellers. The recent publication of five new standards by the Spanish Standardization Committee (UNE) contributes to providing solutions to the challenges that destinations as well as the companies and agents that operate in them must address through a digital and sustainable model that definitely fits like a glove to the cultural tourism. This model strongly needs to be equal in technological and social development to the digitization of cultural heritage, which is the great pending issue, but CARTIF is ready to help. Do you need us?
Each landscape makes specific, different, unique feelings. When contemplating a meadow dotted with trees, we do feel something totally different from what we feel looking at a desert area. This also happens when facing cultural landscapes1. A Romanesque church does not make the same sensations as the ones perceived when contemplating cave paintings.
Numerous investigations conclude that there is a significant correlation between our personality and the landscape preferences. Other research argues that the human-landscape relationship has an “innate” basis, dating back to the survival needs of primitive humans, whose environment demanded perceptual abilities and predispositions, which today- at a psichological level- are still functioning. This explains why we still prefer open and slightly flat landscapes (watching predators), in addition to vegetation and good access to water (covering vital needs).
Then, it could be argued that the affective system brought into ply in landscape appraisal is a consequence of wider individual strategies concerning the personality, innate factors and the individual´s attitude towards the world (enhanced by their experiences and the society where they live).
In other words, the landscape assessment depends on factors that are totally subjective and, therefore, difficult to quantify. So what should I do if I want to measure “what we like” about a certain type of cultural landscape?
This is where the so-called “Affective Computing” pops up, which consists on the study and development of systems and devices able to recognize, interpret and process human emotions.
CARTIF, withinSRURAL project, is applying this set of techniques to obtain the “affection value” of any cultural landscape (“measuring how much you like the landscape”). To this ends, a cognitive system is being developed that on the one hand uses verbal language and facial expressions as input, and on the other hand, certain physiological signals (heart rate, sweating and body temperature while you are immersed into the landscape via virtual reality glasses)
All these inputs are introduced into a neural network previously trained by means of Deep Learning2 techniques to obtain the landscape´s “affection value” as useful output.
The “affection value” is very useful for decision-making by territory managers, for instance, to guide tourism promotion campaigns towards high affection values areas, but with no significant visits number. Also for profiling and segmenting tourists according to the type o landscapes they are most likely to visit, and thus to carry out targeted and more effective promotional campaigns.
It can also be used to know when it is necessary to take corrective measures or at least carry out a stud of causes in case of a tourist interesting area with a large number of visitors has a relative low affection value.
Since the decision-makers need few but very relevant information, as much graphical as possible, all kind of useful data is displayed in the most user-friendly for them y means of geolocated interfaces. Therefore, the system under development incorporates specific modules to show the information already processed, just ready to draw conclusions, which will quickly lead them to objective data-driven decisions upon Data Mining and Big Data techniques.
1 Is the landscape combining natural and cultural heritage. It has been modified by humans to be adapted to people´s needs according to their beliefs, economic activity, and the shaped society. The most obvious examples of these modifications are traditional crops, buildings and infrastructures.