In an earlier post titled “It’s a robot and it has feelings” I discussed about the possibility of incorporating “feelings” into robots in a similar way as human emotions are displayed when facing external stimuli. Following that post, an obvious question arises: But what for? Or, being more pragmatic: What advantages can a robot obtain from emulating emotional responses?
Empathy is defined as the cognitive ability to perceive what another being can feel, and can be divided into two main components: affective empathy, also called emotional empathy which is the ability to emotionally respond with appropriately to the mental states of another being; And cognitive empathy, which is the ability to understand the point of view or mental state of another being.
What is the added value of this type of “empathic” communication? On the one hand, empathy improves the efficiency of interaction. Thus, as we perform actions we send signals that communicate our intentions (looks, movements of the hands, the body, etc.), which can allow other beings prepared to perceive these signals to identify them and to make a more efficient collaboration in order to achieve joint objectives. On the other hand, empathic interaction could help to lessen the apprehension that some users have when it comes to interacting with robotic devices, making them feel more comfortable with robots and other machines.
Endowing robots with a behavior that simulates human “emotional” behavior is one of the ultimate goals of robotics. Such emotional behavior could allow robots to show their mood (affective empathy) as well as perceive that of users interacting with them (cognitive empathy).
However, despite the impressive advances made in recent years in the fields of artificial intelligence, speech recognition and synthesis, computer vision and many other disciplines directly and indirectly related to emotional recognition and artificial emotional expressiveness, we are still far from being able to endow the robots with the empathic capacities similar to those a human being has.
Take as an example a person with a friend who just went to two job interviews but only one job was offered to him. Should that person show satisfaction or disappointment for his friend, or give that event any importance at all? Your response to this will obviously depend on what you know of your friend’s goals and aspirations. There are two components here that would be difficult to implement in a robot. In the first place, the robot would need to have a rich knowledge of itself, including personal motivations, weaknesses, strengths, history of successes and failures, etc. Second, its own identity should overlap with that of his human companion enough to provide a shared knowledge that is meaningful and genuine.
Since we are still far from being able to develop robots with such a human-like empathy, robotic system developers need to understand when to show empathy, at what level and in what contexts. For example, empathy may not be necessary in a washing machine, but it is clear that an empathic behavior can improve the performance of robotic applications in areas such as education or the home. On the other hand, pre-programmed empathic behaviors can become annoying and ineffective. For example, there are studies that indicate that drivers come to refuse (as an act of rebellion) to listen to a car that repeatedly says: “you seem to be tired and should stop.”
In this sense, one of the lines of research in which CARTIF participates is in the development of robots and social avatars with the capacity to recognize and express emotions, and to do so in a way that suits their operating environment and the services that they are offering. In this line, and as members of the European robotics platform euRobotics AISBL(Association Internationale Sans But Lucratif) we actively interact with other European centers of recognized prestige within the group “Natural Interaction with Social Robots”, which goal is the discussion and dissemination of cutting-edge advances at European level in the field of interaction between humans and social robots.
One of the recent activities carried out in this context has been the European Robotics Forum held last March in Edinburgh, where we had the opportunity to discuss with members of the group precisely the needs, recommendations and future lines in the development of robots with empathic capacity. From the discussions that took place in this forum, I would like to summarize the following notes which, although of a general nature, will surely mark the European trends in research on social robotics in the coming years:
It is necessary to continue researching what empathy means for different types of robots, such as exoskeletons, social robots, service robots, manufacturing robots, etc. And investigate how those robots can express empathy in their respective contexts of application.
Empathic interaction must be a dynamic process that evolves in order to build a relationship with the user over time. Preprogrammed repetitive behaviors are not perceived as empathic by the user, especially when the behavioral tips used to activate robot actions are known to the user.
Because robots do not possess the physiological processes that allow them to be empathic, the solution is to detect the socio-emotional signals transmitted by humans and have the robots mimic the empathic behavioral responses that would be displayed by humans.
During experimentation with empathic robots, we should make use of systems that are sufficiently complex and have the necessary capabilities to investigate the different aspects of empathic behavior and to quantitatively assess their impact. After studying the different aspects of empathic interaction, the most relevant aspects could be selected and realized in simple and low-cost systems for commercialization.
Public initiatives like ‘Connected Industry 4.0’ are developing measures that allow the industrial fabric to benefit from the intensive use of ICT in all areas of its activity. These initiatives are linked to the term Industry 4.0, which refers to the challenge of carrying out the 4th Industrial Revolution through the transformation of industrial sector by the enabling technologies incorporation: 3D printing, robotization, sensors and embedded systems, augmented reality, artificial vision, predictive maintenance, cybersecurity, traceability, big data, etc.
Construction sector, as the industrial one, is immersed in a deep metamorphosis before the irruption of these new technologies. The economic crisis has been very intense in this market. As a strategy for its recovery, it must its particular revolution, taking full advantage of the opportunities offered by enabling technologies. For this reason, the ‘Construction 4.0’ concept appears as a necessity to digitize the construction through the incorporation of enabling technologies adapted to their particularities.
In this sector, it is the first time that a revolution is built ‘a priori’, which gives us the opportunity both to companies and to research centres to participate actively in the future.
In CARTIF, we work along this line by means of some projects that apply these technologies. In the case of the BIM (Building Information Modeling), which proposes to manage the complete cycle of the project through a digital 3D model, we develop improvements to include all the actor of the value chain.
With reference to 3D printing, a methodology that allows the construction of objects layer by layer, obtaining singular pieces or with complex geometries, CARTIF applies technologies to the direct printing on vertical surfaces for the rehabilitation of facades.
If we talk about robotization, besides the fact that making specific robots to certain tasks, adapt existing machines increasing their autonomy and safety of operators. In this line, we collaborate to develop monitoring and navigation technologies for the automatic guidance of machinery and to detect risks situations between machinery and operators.
With all these innovations, the future of construction is promising, if and when this research would be considered as an essential basis for its growth.
The Cambridge dictionary defines the noun “label” as “a piece of paper or other material that gives you information about the object it is attached to.” An active social network user would explain us tags are one of the most famous ways people use to find content on Instagram, for example, therefore using the correct ones in your photos can increase your visibility, even your sales, and this is an interesting option, isn’t this? There is growing evidence about the importance of showing clear messages through labels, we cannot forget this aspect.
We explained you the meaning of nutrition labeling in food some time ago, so taking advantage of the fact that we are already aware of the importance of showing how much sugar is in our food as with choosing the right hashtagfor our photos, what do you think if we know a little more about environmental labels?
With consumers becoming increasingly demanding, to declare the environmental behavior of products, that is, show their environmental profile through a label, can make a differentiation from competitors. The International Standards Organisation (ISO) proposed three categories of environmental labels according to the aspects covered and the rigor required to award the seal (and they are not trending topic at this moment).
Let’s see:
Type I: Eco-label. These claims are a voluntary, multiple-criteria based, third party program that awards a license that authorises the use of environmental labels on products, based on life cycle considerations. One of the most widely used systems is the Eco-label scheme and among the multitude of products and services that are eligible to be labeled are shower gels.
Type II:Self-declaration claims. These labels are based on self-declarations by manufacturers or retailers and provide information about an only single significant environmental impact. There are numerous examples of such claims, for example, the Möbius loop.
Type III. Environmental Product Declarations (EPDs). These claims consist of quantified product information based on life cycle impacts under several categories of parameters and presented in a form set and verified by a qualified third party, showing environmental impacts.
Now, visualize yourself in the aisle of your supermarket with an eco-labeled product in your hand, reading the phrase “better for the environment” and listening in your head a question “who has verified this, the same company that manufactures the product?”. It’s just not the case. Labeling generates controversy, we know this, so we take this opportunity to tell you that any company that seeks to obtain an eco-label type I or III must follow a rigorous and exhaustive process, which implies to carry out a complete Life Cycle Assessment and it will be necessary to verify all the calculations by a qualified third party. This implies these processes can on no account be branded as arbitrary and avoiding the green-washing is a commitment.
Of course, we encourage you to check it #youchoose.
The use of computer environments in the mechanical engineering field has grown significantly in recent decades. Most companies in the industry are aware of the benefits of computer-aided design (CAD) and engineering (CAE) systems. The traditional tasks associated with the design of machine elements, structures and manufacturing processes might prove very straight forward. The biggest benefit is obtained when interdisciplinary teams share models in order to designers, analysts and suppliers can evaluate several alternatives, understand design decisions and collaborate to achieve the requirements of functionality, quality and cost. This interaction requires agreed management systems, cross-platform environments and local and cloud computing and storage capabilities to take full advantage of its potential.
Nowadays simulation environments offer new capabilities to solve more complex problems. The major advantage of finite element analysis techniques is that it can handle coupled equations describing Multiphysics problems of interest to production companies. The traditional calculations to determine trajectories, tensions and deflections in mechanical structures, mechanisms and assemblies are now added abilities interaction with the surrounding fluids, allowing to address problems of combustion in biomass boilers, of undermining in piles of viaducts or vortex induced vibrations in slender structures.
The efficient use of these tools allows companies to accelerate the innovation, evaluating in a short period of time different alternatives of design, making experiments about prototypes, knowing the real performance of the process or product, updating the virtual model and simulating it against not tested conditions and proceed to optimization before it goes to market. However, some companies are not able to assimilate the full potential of their software investments, because sometimes the simulation remains disconnected from the production line and the methodological cycle discussed above is not completed. Trying to manage with this problem, CARTIF offers technological services of design, simulation, prototyping and testing, ranging from conceptual design to manufacturing and manufacturing supervision, applied to the automotive, renewable energy, chemical, agricultural, building, infrastructures and industrial machinery sectors.
In a previous post I tried to explain the Blockchain technology. In this occasion I will try to explain how customers in the electric market could benefit from it.
One of the most interesting Blockchain’s applications are the smart contracts. While a traditional contract is a piece of paper where two or more parties express their conditions and commitments, a smart contract is a computer program where the conditions and commitments are coded and automatically executed when the conditions are fulfilled. Currently smart contracts are restricted to simple agreements related to very specific applications. The Blockchain technology assures the fulfilment of the contract commitments with no need for a third supervising party. It is expected smart contract will reduce costs and speed up contract management. Besides this, they will enable almost real time audits. A Blockchain platform that supports smart contracts is Ethereum.
Smart contracts in the energy distribution sector could play the role of the current control algorithms. Among other duties, these algorithms are in charge of controlling energy flux between storage and generation depending on energy surplus. A first approach to smart contracts in the energy sector is POWR, developed by the Oneup company. The prototype runs on a neighbourhood where all the houses have solar panels installed. The energy that is not used in one house is offered to the neighbours and, at the same time, neighbours with a need for energy ask for it to their neighbours. Blockchain is used to record the energy flux between neighbours. The smart contract is stored in mini-computers attached to the meters in every house. It is continuously supervising the conditions coded in the smart contract and executing the commitments as soon as the conditions are met. Payments are done in its own cryptocurrency.
A similar example can be found in New York. The Brooklyn Microgrid project is building a microgrid to which the neighbours are connected. They have solar panels installed on the roofs of their premises. Neighbours use the energy they produce, but also they trade in energy to satisfy neighbours’ needs. This peer-to-peer market is supported by TransActive Grid, an initiative developed by LO3 Energy and ConsenSys. They use Ethereum technology. The project is studying how a microgrid autonomously managed by a group a people could behave. In a future the neighbours could become the owners of the microgrid according to a cooperative scheme.
Sharge participant installing Sharge at home
Alternatively to smart contracts, Blockchain technology is being demonstrated in other ways. One example is Sharge, a company that developed Blockchain-based technology that enables an electric car driver to charge the battery in any domestic plug engaged in the program. The house owner installs a small device on a plug, the car driver opens the device using his smart phone and then, after completing the charge, the plug owner is paid with a cryptocurrency. A similar idea is being developed by Slock.it and RWE in the BlockCharge project. In both cases, the target is to develop a payment system for charging electric vehicles with no need for a contract nor an intermediary, agent or broker.
There are also cryptocurrencies designed to encourage the generation of solar energy, like Solarcoin. Others seek to enhance energy interchange between machines, like Solether. In this case Blockchain meets the Internet of Things paradigm.
Blockchain is a technology that could benefit energy users and foster the use of renewable energy. It will also empower the energy user, in particular domestic ones. While the technology is developed and tested, the legal and normative framework should be revised to remove barriers that could jeopardise Blockchain-based technology use.
The “Blockchain” is the technology supporting Bitcoin, the infamous cryptocurrency known for being the first widely used and reportedly used in some criminal activities. Blockchain is also the technology underlying Ethereum, which is also a means to implement smart contracts. There is an increasing interest around Blockchain because it promises disruptive changes in banking, insurance and other sectors narrowly involved in everyday life. In this blog entry, I will try to explain what is Blockchain and how it works. In the next entry, I will present some uses in the energy sector.
Blockchain is an account book, a ledger. It contains the transaction records made between two parties, like “On April 3, John sold 3 potatoes kilos to Anthony and paid 1.05 Euro”. The way Blockchain works avoid any malicious change in the records. This feature is not granted by a supervisor, but is a consequence of the consensus reached by all peers participating in the Blockchain. This has consequences of paramount importance. For instance, when Blockchain is used to implement a payment system, like Bitcoin, it is not needed a bank supervising and facilitating the transaction anymore. Even it would not be necessary to have a currency as we currently have.
The blockchain is a decentralised application running on a peer-to-peer protocol, like the well-known BitTorrent, which implies all the nodes in the Blockchain have connections among them. The ledger is stored in all the nodes, so every node stores a complete copy of it. The last component is a decentralised verification mechanism.
The verification mechanism is the most important part because it is in charge of assuring the integrity of the ledger. It is based on consensus among nodes and there are several ways to implement it. The most popular ones are the proof-of-work and the proof-of-stake.
The proof-of-work is the most common verification mechanism. It is based on solving a problem that requires certain amount of computing effort. In a nutshell, the problem is to find out a code called hash using the block content (a block is a set of recent ledger inputs). The hash is unique for a given block, and two different blocks will always have different hashes. The majority of the nodes must agree in the hash value, and if some of them find a different hash, i.e. if there is no consensus, the transactions in the block are rejected.
Applications based on Blockchain can be classified into three different categories according to their development status. Blockchain 1.0 are the virtual cryptocurrencies like Bitcoin and Ether. Blockchain 2.0 are the smart contracts. A smart contract is a contract with the ability to execute by itself the agreements contained in it. This is done with no need for a supervisor who verifies the contract compliance. Finally, Blockchain 3.0 develops smart contract concept further to create decentralised autonomous organisational units that rely on their own laws and operate with a high degree of autonomy.