El CO2 biogénico: retos y oportunidades para un futuro sostenible

El CO2 biogénico: retos y oportunidades para un futuro sostenible

En la lucha contra el cambio climático, la innovación tecnológica se presenta como uno de nuestros aliados más poderosos. Una de las áreas más prometedoras y desafiantes en este sentido es la transformación del dióxido de carbono (CO2), un gas de efecto invernadero prevalente, en materias primas útiles para la industria y el transporte. Este enfoque no solo promete mitigar las emisiones de gases efecto invernadero, sino que también abre la puerta a una economía circular donde los residuos se convierten en recursos.

El CO2 es el principal contribuyente al calentamiento global, producto que surge principalmente de la quema de combustibles fósiles y la deforestación. La concentración de CO2 en la atmósfera ha alcanzado niveles sin precedentes, lo que hace imperativo encontrar maneras efectivas de reducir estas emisiones. La captura y utilización de CO2 se presenta como una estrategia prometedora, transformando este gas en productos valiosos, lo cual podría revolucionar sectores como el transporte y la manufactura, reduciendo significativamente nuestra huella de carbono.

La transformación del CO2 en materias primas implica varios métodos, entre los que destacan la electroquímica, la catálisis y la biotecnología. Estas tecnologías buscan convertir el CO2 en combustibles, plásticos, materiales de construcción y otros químicos industriales, que básicamente se clasifican en tres tipos:

  1. Biotecnología: basadas en procesos biológicos de fermentación con sustrato en fase gas-líquido. Utiliza organismos modificados genéticamente, como microalgas y bacterias, para absorber CO2 y convertirlo en biocombustibles y productos químicos. Esta aproximación ofrece el potencial de procesos altamente sostenibles que pueden operar en condiciones ambientales.
Metanol
  1. Tecnología electroquímica: basada en la utilización de energía eléctrica y diferencia de potencial entre dos electrodos para reducir el CO2 en productos químicos de valor añadido (por ejemplo, metanol, ácido fórmico, etc.), que puede ser utilizado como combustible de tipo e-fuel, moléculas verdes portadoras de H2, o precursores químicos para uso industrial. La eficiencia de estos procesos ha mejorado significativamente, pero aún enfrentan desafíos en términos de escalabilidad y costos.
  1. Procesos químico-catalíticos: basados en el uso de catalizadores para activar y acelerar la reacción química y transformación del CO2 en productos de valor añadido (metano, metanol, dimetil-éter, etc.). Las líneas de investigación actuales están explorando nuevos catalizadores que puedan operar a bajas temperaturas y presiones, haciendo el proceso más energéticamente eficiente y económicamente viable.

Por otra parte, la transformación de CO2 enfrenta obstáculos técnicos, económicos y regulatorios. La eficiencia energética, la reducción de costos y la integración de estas tecnologías en la infraestructura existente son desafíos clave. Además, se requiere un marco regulatorio que promueva la inversión en estas tecnologías y la utilización de productos derivados del CO2.

A pesar de estos desafíos, la captura y usos de CO2 como fuente de carbono renovable y para contribuir a la descarbonización de la industria y el transporte, ofrece una oportunidad sin precedentes para mitigar el cambio climático y avanzar hacia una economía más sostenible y circular. Al convertir un problema en una solución, podemos desbloquear nuevas vías para la sostenibilidad ambiental, la innovación tecnológica y el crecimiento económico. La colaboración entre gobiernos, industrias y comunidades científicas será fundamental para superar estos desafíos y aprovechar el potencial de estas tecnologías para un futuro más verde.

Proyectos de I+D como CO2SMOS, coordinado por el área de Biotecnología y Química Sostenible de CARTIF, tiene como objetivo desarrollar un conjunto de tecnologías innovadoras, escalables y directamente aplicadas en el sector de las industrias bio-basadas que ayudará a convertir las emisiones de CO2 biogénico en productos químicos de valor añadido para su uso directo en la síntesis de bioproductos materiales de baja huella de carbono. Para ello, se propone una solución híbrida integrada que combina tecnologías innovadoras y procesos intensificados de conversión electroquímica/catalítica y fermentación de precisión, junto con el uso de fuentes de vectores renovable como H2 verde y biomasa. Elementos clave para alcanzar el objetivo de cero-emisiones y neutralidad climática de la industria.

El gas biogénico, ¿bio qué?

El gas biogénico, ¿bio qué?

Cada día se oye más hablar del biogás como fuente de energía, pero ¿qué es el biogás y qué diferencia hay con el gas natural? La diferencia está en que el gas natural es un combustible fósil, mientras que el gas biogénico es renovable.

El gas natural se formó hace millones de años, en la época de los dinosaurios, como el petróleo o el carbón. La acumulación de plancton y restos de animales y vegetales en el fondo marino, enterrados por capas de tierra, provocó que se produjera en condiciones anaerobias, es decir, sin oxígeno.

Las bacterias descompusieron la materia orgánica y los gases generados ascendieron. En los casos en los que había una capa impermeable, se acumularon surgiendo bolsas o yacimientos de gas. Por tanto, es un recurso finito, una vez que se agote, ya no habrá más para abastecer las demandas energéticas humanas.

Fuente: https://grupo4nsr.blogspot.com/2015/12/gas-natural.html

El gas natural, está formado sobre todo por metano, etano y dióxido de carbono, aunque suele tener otros componentes o impurezas, por lo que la energía se obtiene por combustión. Con respecto a otros combustibles fósiles, es más eficiente y más limpio en cuanto a emisiones, aunque depende de las impurezas.

El gas biogénico también se produce por descomposición de materia orgánica bajo la acción de bacterias, en ausencia de oxígeno, por eso también se le llama Gas Natural Biogénico, pero en este caso es un tanque con condiciones controladas de temperatura y presión.

Pero en el gas biogénico, la materia orgánica utilizada, proviene de subproductos de granjas, cultivos o industrias, por lo que es una energía renovable. La composición del gas biogénico es similar, pero con menos impurezas, ya que se mejora la calidad mediante upgrading, que está explicada en esta entrada de nuestro blog.

Además, el gas natural está a miles de kilómetros, sin embargo, el gas biogénico puede producirse en tanques de pequeñas dimensiones para autoabastecimiento, por ejemplo, en una granja, o a gran escala en una depuradora, y se puede aprovechar la canalización ya existente del gas natural.

Puede parecer que son todo ventajas, pero no es así. Por ese motivo, CARTIF organizó el pasado 20 de marzo de 2024 la primera reunión de la Comunidad de Prácticas dentro del proyecto Horizonte Europa CRONUS.

Las Comunidades de Prácticas, consisten en la agrupación de distintos actores del sector del biogás, como son las universidades, centros de investigación, productores o distribuidores, entre otros y ejercen de portavoces del sector tanto para los ciudadanos como para las administraciones, haciendo una valoración de las fortalezas y debilidades, de las facilidades y las barreras del uso del biogás con el fin de hacer un uso responsable en toda la cadena de valor.

En esta primera reunión, se afrontaron tres retos principales:

  1. Materias primas
  2. Tecnología
  3. Normativa: Logística, Productiva, Social

En el primer reto, se trató el tema de las materias primas. En la actualidad no hay problemas para encontrarlas, pero sí para abastecerse. La pregunta es: ¿es un límite de logística o de cantidad? Por accesibilidad, no es igual de accesible en montaña que en meseta, y por tamaño de planta y proveedor.

También preocupa que, en el futuro, debido a la ley de la oferta y la demanda se alcancen precios desorbitados tanto en la materia prima como en el transporte. Es necesario empezar a regular y organizar el mercado para asegurar un suministro, en el que toda la cadena de valor se beneficie.

Es importante considerar el potencial metanogénico, es decir, cuánto gas puede producir una planta con una determinada materia prima, esto determina su viabilidad, por ello las materias primas deben cumplir unos estándares y heterogeneidad todo el año, para obtener una producción constante, tanto en calidad como en cantidad.

Esto llevo a la cuestión de la conveniencia de la alimentación con una sola materia prima o varias. En algunos casos, es necesario hacer un pretratamiento de estas y debido a la complejidad técnica no resulten rentables, por lo que tener flexibilidad en el uso de materias es una ventaja.

Lo que más preocupa es la inyección en la red, se encuentran problemas a la hora de incorporar el gas producido dentro de la red de distribución nacional existente, en algunos casos hace que se favorezca el autoconsumo del gas, pero en otros, el desaprovechamiento de esta fuente de energía.

Es una tecnología madura, pero aún hay innovación por hacer, sobre todo con las bacterias. Todavía se descubren puntos de mejora como nuevas cepas, y hacen conocer mucho mejor el proceso y, por tanto, su eficiencia.

Al fin y al cabo, es una inversión, por lo que hay que medir concienzudamente el riesgo y rentabilidad vs. las barreras administrativas y legales, y aunque cada vez más son los que se decantan, serían más si hubiera un empujón financiero con subvenciones pero que no sean la base del producto.


El segundo reto tenía como objeto el conocer las opiniones sobre el prototipo FP5 que se está desarrollando en CARTIF dentro del proyecto CRONUS.

Los asistentes expertos destacaron que compite directamente con el upgrading, por lo que, económicamente puede que no resulte viable a gran escala, pero si para plantas pequeñas, pero es una buena solución, ya que no necesita pasar un proceso de purificación tan grande.

Por otro lado, necesita una etapa de hidrolisis, que requiere energía, pero es un proceso autosostenible, por lo que es capaz de autoabastecerse. Ya que es muy importante que la tecnología favorezca la rentabilidad, ya que el dinero siempre es un limitante, tanto para el desarrollo como para la producción.

Se destacó su punto fuerte y es que puede valorizar y reducir el CO2 generado en la DA, obteniendo un biometano de más calidad que mediante procesos tradicionales, sobre todo porque es más interesante la cogeneración que el gas para la venta.

Como es la primera reunión solo se pudo ver el prototipo de laboratorio, por lo que percibieron que podrían darse problemas en el escalado en los electrodos, ya que tienen que ser más grandes, y no hay tecnología para la digestión anaerobia asistida por célula de electrólisis microbiana en el mercado (MEC-AD), pero CARTIF ya comentó que hay más opciones de integrar la MEC en el digestor.

También se planteó la posibilidad de problemas al tener que reiniciar la planta, tras una parada, que pueda ser lenta y compleja, pero se trata de un sistema continuo por lo que no será tan lento.

La Comunidad se muestra optimista con prototipo FP5 de CARTIF y están deseosos de poder ver su avance en las próximas convocatorias.



En este reto, es donde hubo mayor participación y unanimidad. Parece que la Administración no está avanzando tan rápido como lo está haciendo el gas biogénico. Siendo una barrera el tiempo de tramitación, que puede llegar a tres años la aprobación del proyecto, a lo que hay que sumar las autorizaciones ambientales, y el tiempo dedicado al proyecto de ingeniería de la planta.

Esto podría mejorar con una legislación que favorezca el autoconsumo como primas o pagos de generación y venta de energía. Sería interesante que se hiciera un mapeado de producción de residuos de todo el país.

En el caso de Castilla y León, existe la obligatoriedad de convertirse en gestor de residuos autorizado y limitaciones en la distancia máxima permitida para transporte de digerido, igual que en el transporte de purines, lo que demuestra que la administración está preparada.

Pero falta revisar la definición de residuos, para poder revalorizar subproductos para su uso en la digestión anaerobia y también del digestato resultante ya que tienen muchos usos potenciales, como el stirpping/scrubbing o la cristalización de estruvita, que incluso pueden considerarse productos ecológicos, como fertilizante.

Las materias primas, como el purín, deben ser usados con responsabilidad debido a la contaminación de los acuíferos por nitratos, por lo que el uso para la generación de biogás es una solución para este residuo, además el digestato resultante se podría revalorizar como fertilizante o como ingrediente de compost.

La demanda creciente del biogás, pone de manifiesto la necesidad de las granjas de modernizarse, y así aumentar sus ingresos con la venta de residuos y disminución de gastos energéticos al usar el biogás.

Por otro lado, se ve la necesidad de que la Administración actualice con formación específica a sus técnicos, ya que, a la hora de evaluar un proyecto, no hay claridad en los criterios, normas y procedimientos administrativos a aplicar, habiendo diferencias entre técnicos.

En definitiva, se necesita más apoyo de la Administración, sobre todo con las empresas privadas que controlan las redes de distribución y que establecen los requisitos técnicos y económicos de conexión e inyección a la red, traduciéndose en condiciones técnicas y económicas abusivas. La Comunidad de Prácticas considera esta barrera fácil de eliminar.

Existe falta de difusión y de conocimientos, por lo que los ciudadanos lo asocian a malos olores, movimiento ruidoso de camiones y falta de seguridad, por lo que la Comunidad de Prácticas está haciendo una buena labor con la difusión y concienciación de la sociedad del funcionamiento del gas biogénico y de la tecnología que lleva asociada.

Existen barreras tanto urbanas como rurales, cada una con su complejidad, además de que cada Comunidad Autónoma tiene su regulación al respecto, por lo que hay que abordar de manera individual cada planta en cada área, mediante jornadas, participación ciudadana, red de interacción de los ciudadanos de otras zonas que ya tengan esta tecnología implantada, pero sobre todo con transparencia. La realidad es que el desarrollo del gas biogénico, aportará su granito de arena, a la repoblación rural, generación de puestos de trabajo, así como la producción de energía y al desarrollo de la Economía Circular, siendo un tema pendiente en la agenda 2030.

Más información del proyecto CRONUS en www.cronushorizon.eu

Nos quedamos sin luz

Nos quedamos sin luz

Hace un par de semanas participé en una reunión de empresas que trabajan en el ámbito de las tecnologías de la información y comunicación aplicadas al sector energético. Entre los participantes había representantes de empresas que desarrollan soluciones basadas en la inteligencia artificial, distribuidoras de electricidad, petroleras buscando un nuevo camino, centros de investigación, etc. También participó una persona perteneciente a Red Eléctrica de España (REE).

En un determinado momento del debate que se propició, esta persona de REE hizo un comentario que dejó mudos por unos momentos a los demás participantes. Dijo algo perturbador, algo inesperado, algo desconcertante. Esta persona de REE dijo que en un futuro no lejano tendremos que olvidar la idea de que la energía eléctrica esté disponible durante todas las horas del año. Es decir, una representante de REE, que es la columna vertebral del sistema eléctrico español, nos dijo a los allí presentes que en un futuro no lejano no habrá energía eléctrica para todos durante todo el tiempo.

Cierta sorpresa se vio en los rostros de los que estaban con ella en la mesa redonda. Algunos intentaron aclarar sus palabras mencionando la respuesta de la demanda, un servicio por el cual los consumidores renuncian a consumir electricidad a cambio de una compensación, como el SRAD1 actualmente en vigor en España. Pero ella dejó claro que no se refería a eso e insistió en la literalidad de sus palabras: no habrá energía para todos durante todo el tiempo. Yo la escuchaba desde mi silla en la segunda fila y tres preguntas vinieron a mi cabeza: por qué va a pasar eso, cómo nos va a afectar y cómo se podría evitar o, al menos, paliar.

La razón por la que la energía para todos durante todo el tiempo puede llegar a su fin es la renuncia a usar combustibles fósiles. El día que eso pase solo contaremos con las energías renovables; y ya sabemos que son fuentes de energía intermitentes y que no se pueden controlar a voluntad. En algunos países, no parece que vaya a ser el caso de España, podrán resolver solo parcialmente este problema con el uso de la energía nuclear. Al menos mientras tengan acceso a las minas de uranio, pero esa es otra historia que tendrá que ser contada en otro momento.

Imaginemos cómo sería la vida cotidiana sin tener asegurado el suministro de energía eléctrica. Se convertiría en un bien escaso, por lo que su precio aumentaría. Las comercializadoras podrían hacerse con parques de baterías para garantizar el suministro a aquellos consumidores dispuestos a pagar todavía más. Muchas industrias dejarían de ser competitivas y emigrarían a países con una seguridad de suministro mayor. Aparecerían vecindarios de personas pudientes con sus propios medios de generación y almacenamiento que les permitirían aislarse del sistema eléctrico y eludir el problema. Los que no pudieran pagar un suplemento o aislarse en su propia isla energética sufrirían un nuevo tipo de pobreza energética. Y hemos de tener en cuenta que en ese futuro no lejano la calefacción de las viviendas estaría electrificada, por lo que la mayor dependencia de la electricidad agravará el problema.

¿Qué hacer para evitar que esta situación llegue a afectarnos hasta el punto de no poder tener un frigorífico en casa? Quizá la respuesta esté en las soluciones energéticas locales, en la eficiencia energética y en el uso inteligente de la energía: Generar la electricidad allí donde se utiliza, no malgastar energía, almacenar la sobrante, convertir energía eléctrica en térmica y térmica en eléctrica y gestionar el uso de la energía utilizando técnicas avanzadas de predicción, control y optimización (eso que algunos llaman inteligencia artificial). Habría que ver cuál sería el entono local óptimo. ¿Un barrio, una ciudad, una comarca? Estos entornos locales podrían estar conectados con sus vecinos más cercanos para intercambiar sobrantes de energía y quizá pasar así de un sistema eléctrico centralizado a una cadena de islas energéticas más o menos autosuficientes. Y digo más o menos autosuficientes porque quedaría por resolver el problema de los grandes consumidores de energía, como las industrias o los centros de procesamiento de datos, esas fábricas del siglo XXI cuya materia prima son los datos. ¿Podrían ser los SMR (small modular reactor o pequeño reactor nuclear modular) una solución para los polígonos industriales en un futuro no lejano? No en España, por lo que parece. Y también habría que resolver el problema de esos procesos industriales que requieren temperaturas que no son fáciles de alcanzar sin combustibles fósiles. No parece que la adaptación a un mundo sin gas y petróleo vaya a ser fácil, sobre todo si tenemos en cuenta que paneles fotovoltaicos, aerogeneradores y baterías requieren de un gran uso de energía (hoy en día fósil) para su fabricación. ¿Tendrán razón los que abogan por el crecimiento cero? ¿O la tendrán los que ven en la Negociudad de Mad Max un reflejo de lo que nos espera? De momento tenemos a personas de REE sembrando dudas sobre la seguridad del suministro en España.


1 https://www.ree.es/es/sala-de-prensa/actualidad/nota-de-prensa/2022/10/el-sistema-electrico-peninsular-cuenta-con-cerca-500-MW-respuesta-activa-de-demanda-equilibrar-generacion-demanda-momentos-puntuales

La historia de mi centro. En búsqueda de la felicidad

La historia de mi centro. En búsqueda de la felicidad

CARTIF nace como muchos otros centros tecnológicos (CT), en el seno de un departamento universitario. En nuestro caso, nuestro Director General José R. Perán lo creó hace ya casi 30 años en el departamento de ingeniería de sistemas y automática de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad de Valladolid.

El centro va creciendo y evolucionando en conocimientos adquiridos, en número de investigadores que forman parte de él, así como en las instalaciones con las que va contando.

Es en el 2008 cuando yo entro en CARTIF, y me encuentro que el centro está inmerso en el proceso de implantación de un Plan de Marketing redactado por expertos en la materia con el objetivo de vender las tecnologías y conocimientos con los que contaba en aquel momento el centro a empresas identificadas en ese plan. En aquel momento el centro tenía una capacidad instalada orientada al mercado de casi un 50% de sus recursos. Es decir, la mitad de la plantilla estaba claramente enfocada hacia la transferencia. Con esa capacidad instalada se obtenía aproximadamente unos retornos de un 40%, es decir casi la mitad de los ingresos del centro procedían de facturación de empresas.

Con el «tocho» de plan de marketing, CARTIF se lanza al mercado, dedicando aún más recursos en intentar hacer transferencia, pero obteniendo prácticamente los mismos resultados… El crecimiento del centro estaba estancado y amenazaba ya la crisis de fondos públicos nacionales allá por el año 2011. El centro empieza a dedicar recursos al programa Marco Europeo, ante la previsión de escasez de fondos nacionales, convirtiéndose en el principal programa a partir del 2017-2018, momento en el que arranca la era de los kick-off, los work packages y el agobio porque el officer nos admitiera » el deliverable»… Los investigadores de CARTIF en aquella época solo tenían en su cabeza infodays, deadlines y reports… El nivel de estrés in crescendo por la exigencia en las justificaciones.

Impresión 3D máscaras antisalpicaduras

Unos años más tarde, concretamente el día 13 de marzo de 2020 cada persona de CARTIF salimos por la puerta con nuestros ordenadores y pantallas. Se iba a proclamar el estado de alarma, estábamos en una pandemia mundial por coronavirus… Los hospitales estaban colapsados, las residencias de ancianos blindadas, era una emergencia mundial. El mercado pedía a gritos ayuda… El mercado llamaba a la puerta…

CARTIF pone en marcha todo lo que está a su alcance como conocimiento y tecnologías. Se pone a fabricar los famosos EPIS (Equipos de Protección Individual) para sanitarios, a ceder equipos de esterilización,… Los investigadores se sienten orgullosos, quieren más, por primera vez en mucho tiempo no tienen que convencer al mercado, solo ofrecer lo que pide.

El centro vuelve a hacer click tras un periodo de confusión y la cultura de transferencia que siempre ha existido vuelve a aparecer, esta vez reforzada con la nueva subdirección general, recordando lo que somos: el agente que responde a las llamadas, y no calls, del mercado.

Porque los CCTT somos el agente que actúa de bisagra entre la ciencia y el mercado, tenemos que frenar la tendencia errónea de generar y luego transferir, propia de un organismo de investigación. Los centros tecnológicos debemos de interiorizar nuestro rol como agentes de innovación, haciendo que los investigadores se conviertan en tecnólogos, piensen en el mercado y se sientan orgullosos y felices de ayudar así al tejido empresarial y también como extensión natural a la sociedad.

Porque solo así….¡Seremos felices…!

De todo lo visible y lo invisible (I)

De todo lo visible y lo invisible (I)

La reciente European Collaborative Cloud for Cultural Heritage (ECCCH) se origina en 2023 para crear herramientas innovadoras que sirvan para digitalizar todo tipo de objetos del patrimonio cultural, convirtiéndose en un tema estrella en la investigación aplicada de la UE para garantizar la sostenibilidad y la conservación asequible de nuestro legado histórico.

Puedes imaginar que digitalizar el patrimonio cultural implica una amplia variedad de tecnologías y técnicas, algunas de las cuales sirven para analizar aquellas cuestiones que somos capaces de “detectar” con nuestros ojos (lo visible), y otras sirven para descubrir y analizar aquello que no somos capaces de ver (lo invisible). ¿Alguna vez te has preguntado cuáles son? Sigue leyendo mientras comenzamos con las relativas a lo visible. No seas impaciente, te explicaremos las que se utilizan para lo invisible en el siguiente “episodio”.

Europa dice que digitalizar las características visibles de los objetos del patrimonio cultural requiere al menos de esta gama de herramientas y métodos innovadores:

  • Escaneado 3D de alta resolución: para capturar la forma, textura y geometría de todo tipo de objetos. Para ello se emplean técnicas como el escaneo láser, el escaneo de luz estructurada, la Structure from Motion (SfM, que usa secuencias de imágenes) o la Neural Radiance Field (NERF, que aplica IA a secuencias de imágenes). Todas ellas permiten crear 3D tan detallados como se necesite.
  • Métodos avanzados de obtención de imágenes: esto puede incluir técnicas como imágenes multiespectrales (que usan normalmente entre 3 y 20 bandas no necesariamente contiguas unas a otras), imágenes hiperespectrales (que usan un mayor número de bandas, pero siempre contiguas) o imágenes de transformación de reflectancia (RTI), que revelan detalles, mejoran la precisión del color y proporcionan análisis de materiales.
  • Realidad Virtual (RV) y Realidad Aumentada (RA): para generar experiencias inmersivas y visualización de objetos del patrimonio cultural. Permiten a los usuarios explorar e interactuar en entornos virtuales con objetos digitalizados, proporcionando una experiencia más atractiva y educativa.
  • Metadatos y anotaciones semánticas: para garantizar la adecuada documentación, organización y recuperación de los objetos digitalizados. Estas herramientas permiten la descripción, clasificación y vinculación de objetos con información relacionada adicional, como el contexto histórico, información del artista o la importancia cultural.
  • Soluciones de almacenamiento y gestión de datos: a medida que crece el volumen de objetos del patrimonio cultural digitalizados, se requieren repositorios digitales en la nube para proporcionar almacenamiento escalable y seguro a la gran cantidad de datos generados en la digitalización.
  • Plataformas colaborativas: para facilitar la cooperación entre múltiples instituciones y expertos, facilitando el intercambio de criterios y opiniones entre profesionales y partes interesadas, lo que permite un acceso fluido a los datos digitalizados.

Todas estas cosas las hacemos en CARTIF. ¿Te atreves a preguntarnos?

El arte de la comodidad térmica: revolucionando edificios con PCM y bombas de calor

El arte de la comodidad térmica: revolucionando edificios con PCM y bombas de calor

Imagina vivir en un edificio donde la temperatura es tan constante como la receta secreta de la abuela. ¿Cómo lograrlo? Aquí es donde entran en escena los Materiales de Cambio de Fase (PCM) y las bombas de calor alimentadas por energía renovable, el dúo dinámico de la eficiencia energética.

Los PCM son como los maestros zen de la temperatura, manteniendo la calma y equilibrio en el ambiente al almacenar y liberar calor de manera constante. Cuando se combinan con bombas de calor que operan con energía solar o geotérmica, proporcionan una clara garantía de que tu hogar mantenga una temperatura constante.

Aquí tienes algunas razones prácticas para enamorarse de esta combinación:

  • Estabilidad térmica: gracias a los PCM, olvídate de los cambios bruscos de temperatura. Es como tener un termostato mágico que siempre encuentra el punto perfecto.
  • Ahorro energético. las bombas de calor, impulsadas por energía renovable, son como magos que convierten la luz del sol o el calor de la Tierra en ahorros reales en tu factura de energía. Más eficiencia, menos gastos.
  • Ecofriendly: al unir fuerzas, PCM y bombas de calor son como compañeros de viaje que cuidan el planeta. Contribuyen a reducir la huella de carbono, haciendo que tu hogar sea más verde que un prado en primavera.

Ahora, hablando de innovación, entra en escena el proyecto europeo ThumbsUp. Este proyecto busca superar las limitaciones de las tecnologías convencionales mediante el desarrollo de materiales innovadores, y, en este sentido, el edificio CARTIF III será el laboratorio de pruebas, mostrando cómo esta tecnología puede transformar un edificio en un oasis de eficiencia energética.

En resumen, la combinación de PCM y bombas de calor es una solución efectiva para una gestión térmica sencilla. Prepárate para despedirte de los extremos y dar la bienvenida a un hogar siempre acogedor.