Gemelo Digital: la Industria 4.0 en su forma digitalizada

Gemelo Digital: la Industria 4.0 en su forma digitalizada

El gemelo digital se ha convertido en una de las principales tendencias o «modas» en relación con la digitalización. Prácticamente es un sinónimo de producto, algo que puedes adquirir como un bien más para una empresa. En CARTIF, creemos que el concepto de gemelo digital es un sinónimo del paradigma de la industria 4.0, un enfoque «revolucionario» que ha transformado la forma en que concebimos y gestionamos los procesos industriales.

El término «gemelo digital» fue acuñado por John Vickers de la NASA en 2010, pero su predecesor, el ciclo de vida de un producto, fue introducido por Michael Grieves en 2002. Esta filosofía se centraba en gestionar un producto a lo largo de su vida, desde su creación hasta su eliminación. En esencia, el producto físico genera datos que alimentan un espacio virtual, proporcionando información esencial para la toma de decisiones y la optimización del objeto físico.

Una definición de gemelo digital podría ser: «representación digital precisa y completa de objetos físicos, procesos o sistemas con datos en tiempo real y características físicas, comportamientos y relaciones«.

Una pregunta clave es ¿por qué necesitamos gemelos digitales? o ¿cuál es su utilidad? Estas representaciones digitales precisas y en tiempo real ofrecen una serie de ventajas:

  • Recopilación y análisis de datos para obtener información valiosa y generar conocimiento, lo que impulsa la eficiencia y la toma de decisiones informadas.
  • Simulación precisa y dinámica del comportamiento de objetos físicos, lo que posibilita pruebas y experimentos virtuales antes de implementar cambios, como inversiones costosas, en el mundo real.
  • Reducción de costos y riesgos minimizando estos últimos y acelerando la innovación den una amplia gama de sectores, desde la manufactura hasta la atención médica.
  • Actualización en tiempo real de forma constante a medida que se recopilan nuevos datos del objeto físico, lo que garantiza su validez a lo largo de su ciclo de vida.

Al igual que las revoluciones industriales anteriores, la industria 4.0 ha transformado la forma en que trabajamos. Esta cuarta revolución se centra en la interconexión de sistemas y procesos para lograr una mayor eficiencia en toda la cadena de valor. La fábrica ya no es una entidad aislada, sino un nodo en una red global de producción.

Para crear un gemelo digital efectivo, seguimos una receta sistemática de nueve pasos en CARTIF:

  1. Definición del objetivo: identificamos el objeto físico, proceso o sistema que deseamos replicar y comprendemos claramente su propósito y objetivos.
  2. Recopilación de datos: recolectamos todos los datos relevantes del objeto físico utilizando sensores IoT, registros históricos u otras fuentes de información.
  3. Integración de datos: organizamos y combinamos los datos recopilados en un formato adecuado para su procesamiento y análisis.
  4. Modelado y construcción: utilizamos diferentes tecnologías de simulación y modelado para crear una representación digital precisa del objeto físico.
  5. Validación y calibración: verificamos y ajustamos el modelo del gemelo digital utilizando datos de referencia y pruebas comparativas con el objeto físico real.
  6. Integración en tiempo real: establecemos una conexión en tiempo real entre el gemelo digital y los sensores IoT del objeto físico para recopilar datos en tiempo real.
  7. Análisis y simulación: utilizamos el gemelo digital para realizar análisis, simulaciones y pruebas virtuales del objeto físico.
  8. Visualización y acceso compartido: proporcionamos interfaces virtuales y herramientas de acceso compartido para que los usuarios interactúen con el gemelo digital.
  9. Mantenimiento y actualización: mantenemos el gemelo digital actualizado mediante una recopilación de datos en tiempo real, la calibración periódica y la incorporación de mejoras y actualizaciones.

Así como las revoluciones industriales anteriores requerían tecnologías habilitadoras, la industria 4.0 necesita sus propios habilitadores digitales. Como hemos dicho al principio consideramos al gemelo digital una forma digitalizada del paradigma industria 4.0 porque los habilitadores digitales son fundamentales para la creación de gemelos digitales de forma eficaz. En CARTIF, hemos acumulado casi 30 años de experiencia aplicando estas tecnologías en diversos sectores, desde la industria hasta la salud.

Las tecnologías habilitadores digitales se dividen en cuatro categorías principales:

  1. Tecnologías de creación: estas tecnologías permiten la creación de gemelos digitales mediante ecuaciones físicas, datos, modelado 3D o eventos discretos.
  2. Fuentes de datos: para alimentar los gemelos digitales, utilizamos plataformas de integración de datos, interoperabilidad con fuentes de datos y tecnología IoT.
  3. Optimización: la optimización se logra a través de métodos como la programación lineal/no lineal, simulaciones, algoritmos de IA y enfoques heurísticos.
  4. Presentación: la información generada puede presentarse a través de soluciones comerciales, herramientas de código abierto como Grafana o Apache Superset o incluso visualizaciones de realidad aumentada.

A pesar de los avances, el desafío de mantener los gemelos digitales actualizados sigue siendo un área de desarrollo. La actualización automática para reflejar la realidad es un objetivo que requiere una inversión significativa en investigación y desarrollo.

En resumen, los gemelos digitales son el corazón de la industria 4.0, impulsando la eficiencia y la toma de decisiones informadas. En CARTIF, estamos comprometidos a seguir liderando el camino en este emocionante campo, ayudando a diversas industrias a abrazar el futuro digital.

Inteligencia Artificial, una inteligencia que necesita datos nada artificiales

Inteligencia Artificial, una inteligencia que necesita datos nada artificiales

El denominador común en resolución de problemas mediante la inteligencia artificial es la necesidad de datos reales y de buena calidad disponibles para avanzar en los diferentes procedimientos necesarios para crear y entrenar unos modelos adecuados. La investigación práctica en IA a menudo carece de conjuntos de datos disponibles y fiables para que los profesionales puedan probar diferentes algoritmos de inteligencia artificial para la resolución de problemas.

En algunos campos de investigación industrial como el mantenimiento predictivo esta falta de datos es particularmente desafiante, ya que muchos investigadores no tienen acceso a equipos industriales reales o no hay conjuntos de datos disponibles que representen un contenido rico en información en los diferentes tipos de fallos que se puedan presentar en el equipo a analizar. Además de eso, los conjuntos de datos disponibles están claramente desequilibrados desde el punto de vista estadístico, ya que la norma para las máquinas es que funcionen correctamente y solo aparezcan pocos ejemplos de fallas durante su vida útil.

Es muy importante desde el punto de vista de la investigación en IA la disponibilidad de fuentes de datos fiables e interesantes que nos puedan proporcionar gran cantidad de ejemplos para probar diferentes algoritmos de procesamientos de señales e introducir a estudiantes e investigadores en aplicaciones prácticas como el procesamiento de señales, la clasificación o la predicción.

La situación soñada para los investigadores y desarrolladores de soluciones de inteligencia artificial, es que todo el mundo, en la medida de lo posible, comparta datos, pero compartir datos no puede verse solo como una forma de ayudar a otras personas, compartir los datos de investigación puede traer muchas ventajas al donante de estos datos:

  • Es parte de las buenas prácticas en datos y ciencia abierta, al hacer que los datos sean accesibles junto con los artículos científicos generados.
  • Reducir el fraude académico y evitar la publicación de estudios basados en datos falsos.
  • Validar resultados. Cualquiera puede cometer un error, si compartimos los datos que utilizamos, otros investigadores podrían replicar nuestro trabajo y detectar cualquier error potencial.
  • Más avances científicos. Esto es especialmente cierto en las ciencias sociales y de la salud, donde el intercambio de datos permitiría, por ejemplo, más estudios en el cerebro humano como la enfermedad de Alzheimer y muchos otros.
  • Mejores herramientas para la docencia basadas en el análisis de casos reales.
  • Dar mayor relevancia a nuestros trabajos. Diferentes estudios revelan que los trabajos científicos que ponen los datos a disposición en un repositorio público tienen más probabilidades de recibir más referencias que estudios similares para los cuales los datos no están disponibles.

A nivel europeo, la Comisión Europea ha lanzado el Open Research Europe, un programa de publicación científica, para los beneficiarios de proyectos Horizonte 2020 y Horizonte Europa con un servicio para publicar sus resultados en pleno cumplimiento de las políticas de acceso abierto de la Comisión. El servicio proporciona un lugar fácil y de alta calidad revisado por pares para publicar sus resultados en acceso abierto, sin costo para ellos. Otra parte interesante del servicio de esta iniciativa de investigación abierta es Zenodo, un repositorio abierto para cargar los resultados de su investigación (conjuntos de datos, algoritmos, videos,…). Además de las pautas de publicación de investigación abierta, también están disponibles pautas de datos que también se adhieren a los principios F.A.I.R en relación con una serie de repositorios fiables como Zenodo con los que la comisión europea nos obliga a cumplir.

Los principios F.A.I.R a seguir para la publicación de datos significan que los datos y metadatos que los definen deben ser:

  • Findables (Encontrable): a los (meta)datos se les asigna un identificador global, único y duradero.
  • Accesibles: los (meta)datos se pueden recuperar por su identificador utilizando un protocolo de comunicaciones estandarizado.
  • Interoperables: los (meta)datos utilizan un lenguaje formal, accesible, compartido y ampliamente aplicable para representar el conocimiento.
  • Reutilizables: los meta(datos) se describen de una forma rica, con una serie de atributos precisos, variados y relevantes.

Además, desde el punto de vista gubernamental de la Comisión Europea, tanto la Estrategia Europea de Datos como la política de Gobernanza de Datos son iniciativas poderosas centradas en la implementación de espacios de datos europeos, entre los cuales la Comisión propone la creación de un espacio de datos industrial (fabricación) europeo específico para aprovechar la fuerte base industrial europea y mejorar su competitividad.

Como investigadores de CARTIF, estamos comprometidos a promover la ciencia abierta con nuestros proyectos de investigación. Por ejemplo, en el proyecto CAPRI tiene disponible su propio repositorio Zenodo, donde periódicamente subimos resultados de las soluciones que estamos desarrollando para la industria de procesos, como sensores cognitivos o algoritmos de control cognitivo. Os invitamos a visitar el repositorio y echar un vistazo a más de 40 conjuntos de datos, códigos fuente o vídeos que ya hemos compartido.

Difícil de medir

Difícil de medir

Los investigadores cada vez nos enfrentamos más ante situaciones de «digitalizar» algo no digitalizado anteriormente, temperaturas, presiones, consumos energéticos, etc… para estos casos buscamos un sistema de medida o un sensor en un catálogo comercial: una sonda de temperatura, un presostato, una pinza amperimétrica para medir una corriente eléctrica,etc.

En ocasiones, nos vemos en la necesidad de medir «algo» para lo que no se encuentran sensores comerciales. Esto puede ser debido a que no son métricas habituales y no hay suficiente mercado para ese tipo de sensores o directamente, no existen soluciones técnicas comerciales disponibles por diferentes razones. Por ejemplo, puede ser necesario medir características como la humedad de corrientes de materias sólidas, o características únicamente medibles en un laboratorio de control de calidad de forma indirecta y que necesitan un tiempo elevado de experimentación.

También, en ocasiones, se requiere medir características en ambientes de gran dureza por altas temperaturas, como pueden ser los hornos de fundición, o ambientes con mucho polvo que saturan cualquier sistema convencional de medida y en algunas ocasiones puede ser necesario evaluar una cualidad que no se distribuye de forma uniforme (p.ej. cantidad de grasa en una pieza de carne, presencia de impurezas). Otro factor a tener en cuenta, no siempre es posible instalar un sensor sin interferir en el propio proceso de fabricación del material que deseamos medir, o la única forma es tomar una muestra para realizar su análisis fuera de línea y obtener un valor o característica un tiempo después, pero nunca en tiempo real.

En estas situaciones, se necesita recurrir a soluciones a medida que denominamos sensores inteligentes o sensores cognitivos. Además de llamarles así para que parezcan algo exótico o cool, son soluciones que necesitan usar una serie de sensores «convencionales» junto con programas y algoritmos, por ejemplo, de inteligencia artificial, que procesen las medidas devueltas por estos sensores comerciales para tratar de dar una estimación lo más precisa posible de la cualidad que deseamos medir.

Actualmente nos encontramos desarrollando este tipo de sensores inteligentes para diferentes industrias de proceso como la fabricación de asfalto, barras de acero o medicamentos (p.ej. píldoras) en el marco del proyecto europeo CAPRI.

Por ejemplo, en la fabricación de asfalto es necesario secar arenas de diferentes tamaños antes de mezclarse con el betún. Durante el proceso de secado en continuo de estas arenas, el tamaño más fino de arena, denominado filler, se «desprende» en forma de polvo de árido de tamaño más grande y es necesario aspirar este polvo de forma industrial usando lo que se denomina filtro de mangas. Hoy en día, el secado y la aspiración de filler se realiza de forma que se asegura que todo el filler es extraído. El inconveniente de este proceso, es que, en realidad es necesario añadir filler adicional al mezclar las arenas secadas con el betún, pues es necesario en la mezcla, porque el filler mejora la cohesión de la mezcla rellenando huecos entre los granos de arena. Todo este secado y aspiración completo del filler supone un gasto energético que para tratar de minimizar sería necesario poseer una medida del mismo presente en la mezcla de arenas. Actualmente, esta medida se obtiene de forma puntual a través de un análisis granulométrico en laboratorio con una muestra de material antes de secar.

Dentro del proyecto CAPRI estamos trabajando en la compleja tarea de poder medir el flujo de filler aspirado durante el secado. No se encuentran en el mercado sensores garantizados para medir una gran concentración de polvo (200.000 mg/m3) en suspensión a temperatura elevada (150-200ºC).

En el marco del proyecto se ha desarrollado una solución para este problema cuyos resultados de laboratorio podéis consultar en el artículo de investigación recientemente publicado en la revista científica Sensors («Sensor inteligente basado en la vibración para medir el polvo en grandes caudales»).

Llevar a cabo el desarrollo de este tipo de sensores requiere realizar diferentes pruebas en laboratorio, bajo condiciones controladas que permitan verificar la factibilidad de dicha solución y posteriormente, también en condiciones de laboratorio, realizar unos ensayos calibrados que permitan asegurar que es posible estimar el flujo verdadero de filler aspirado en el proceso de secado de las arenas. El proyecto CAPRI ha completado con éxito las pruebas de este sensor y de otro pertenecientes a la fabricación de barras de acero y píldoras farmacéuticas.

El proyecto en su compromiso con la iniciativa de ciencia abierta impulsada por la Comisión Europea, ha publicado en su canal de Zenodo, diferentes resultados de estas pruebas de laboratorio que nos permiten corroborar el éxito preliminar de dichos sensores a falta de su validación y prueba en las zonas productivas de los socios colaboradores del proyecto. En un futuro próximo estaremos en condiciones de compartir los resultados del funcionamiento industrial de este y otros sensores desarrollados del proyecto.


Co-Autora

Cristina Vega Martínez. Ingeniera Industrial. Coordinadora del proyecto CAPRI H2020

El potencial de la IA para la industria de proceso y su sostenibilidad

El potencial de la IA para la industria de proceso y su sostenibilidad

El impacto de la Inteligencia Artificial (IA) es altamente reconocido como uno de los motores clave de la revolución industrial digital junto con los datos y la robótica 1 2. Para aumentar el desarrollo de una IA que sea factible práctica y económicamente en los sectores industriales, necesitamos aplicaciones de IA con interfaces más simples, que no requieran una mano de obra altamente cualificada. Estas aplicaciones de IA deben tener una vida útil más larga y que requiera un mantenimiento menos especializado (por ejemplo, para el etiquetado de datos, entrenamiento, validación…)

Lograr una implementación efectiva de tecnologías de IA confiables dentro de la industria de proceso requiere una comprensión coherente de cómo estas diferentes tecnologías se complementan e interactúan entre sí en el contexto de los requisitos específicos del dominio que requieren los sectores industriales3.Las industria de proceso deben aprovechar el potencial de la innovación basada en IA, dentro del impulso de la transformación digital, como facilitador clave para alcanzar los objetivos del Green Deal y la esperada transición verde y digital necesaria para una evolución completa hacia la economía circular.

Uno de los retos más importantes para el desarrollo de soluciones innovadoras en la industria de proceso es la complejidad, inestabilidad y imprevisibilidad de sus procesos y el impacto en sus cadenas de valor. Estas soluciones normalmente requieren: funcionar en condiciones adversas, bajo cambios en los valores de los parámetros del proceso, falta de monitoreo/medición consistente de algunos parámetros importantes para analizar el comportamiento del proceso y que son difíciles de medir en tiempo real. A veces, dichos parámetros solo están disponibles a través de análisis de control de calidad en laboratorios que son los responsables de vigilar la trazabilidad del origen y calidad de materias primas, materiales y productos.

Para las aplicaciones basadas en IA, estas restricciones son más críticas, ya que la IA requiere (generalmente) una cantidad considerable de datos de alta calidad para asegurar el rendimiento del proceso de aprendizaje (en términos de precisión y eficiencia). Además, obtener datos de alta calidad, generalmente requiere una participación intensiva de expertos humanos para curar (o incluso crear) datos en un proceso que requiere mucho tiempo. Asimismo, un proceso de aprendizaje supervisado requiere el etiquetado/clasificación de ejemplos de entrenamiento por parte de expertos en el dominio, lo que hace que una solución de IA pueda no ser rentable.

Minimizar (tanto como sea posible) la participación humana en el ciclo de creación de la IA implica algunos cambios fundamentales en la organización de su ciclo de vida, especialmente desde el punto de vista de lograr una IA más autónoma, lo que conduce al concepto de self-X-AI4. Para lograr tal comportamiento autónomo para cualquier tipo de aplicación, generalmente se necesita dotar de habilidades avanzadas (denominadas self-X en inglés y traducidas como auto-X) como las propuestas para la computación autonómica (AC, del inglés Autonomic Computing)5:

Habilidades self-X de computación autonómica

Auto-Configuración: (para facilitar la integración de nuevos sistemas de adaptación al cambio)
Auto-Optimización: (control automático de recursos para un funcionamiento óptimo)
Auto-Recuperación: (detección, diagnóstico y reparación para corrección de errores)
Auto-Protección: (identificación y protección de ataques de una manera proactiva)

Por lo tanto, el paradigma de la computación autonómica puede ayudar en muchas tareas de IA a través de una gestión adecuada 6 7 . En este escenario, la IA actúa como el sistema de procesamiento inteligente y el gestor autonómico ejecuta continuamente un ciclo de Monitoreo-Análisis-Planificación-Ejecución basado en el conocimiento (MAPE-K) del sistema IA controlado, con el objetivo de desarrollar una aplicación IA auto-mejorada.

De hecho, estas nuevas aplicaciones de (self-X) IA serán, hasta cierto punto, autogestionadas para mejorar su propio rendimiento de forma incremental5. Esto se realizará mediante el ciclo de adaptación, que permita «aprender haciendo» utilizando el modelo MAPE-K y las habilidades self-X propuestas por la computación autonómica. El proceso de mejora debe basarse en la capacidad de auto-optimización continua (por ejemplo, ajuste de hiperparámetros en el aprendizaje automático). Además, en el caso de tener problemas en el funcionamiento de un componente de Inteligencia Artificial, el administrador autonómico debe activar las habilidades de auto-configuración (por ejemplo, elección del método de IA), auto-reparación (por ejemplo, detección de desviación del modelo entrenado) y auto-protección (por ejemplo, generar datos artificiales para mejorar los modelos entrenados) según sea necesario, basado en el conocimiento del sistema IA.

En tan solo unas semanas, CARTIF iniciará un proyecto con la ayuda de otras organizaciones expertas en IA y empresas líderes de varios sectores de la industria de proceso Europea para abordar estos desafíos y cerrar la brecha entre la IA y la automatización. El proyecto propone un enfoque novedoso para actualizar de forma continua aplicaciones de IA con una mínima intervención de expertos, a partir de una integración de datos para IA, y proporcionando capacidades de computación autonómica (self-X). La idea principal es permitir la actualización continua de las aplicaciones de IA mediante la integración de datos industriales del mundo físico con una intervención humana reducida.

Os informaremos en futuros posts de los avances que realizaremos con esta nueva generación de aplicaciones IA auto-mejoradas para la industria.


1 Processes4Planet, SRIA 2050 advanced working version

EFFRA, The manufacturing partnership in Horizon Europe Strategic Research and Innovation Agenda.

3 https://www.spire2030.eu/news/new/artificial-intelligence-eu-process-industry-view-spire-cppp

Alahakoon, D., et al. Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities. Inf Syst Front (2020). https://link.springer.com/article/10.1007/s10796-020-10056-x

5 Sundeep Teki, Aug 2021, https://neptune.ai/blog/improving-machine-learning-deep-learning-models

6 Curry, E; Grace, P (2008), “Flexible Self-Management Using the Model–View–Controller Pattern”, doi:10.1109/MS.2008.60

7 Stefan Poslad, Ubiquitous Computing: Smart Devices, Environments and Interactions, ISBN: 978-0-470-03560-3

La consciencia no es computable, es cuántica

La consciencia no es computable, es cuántica

Mucho del nuevo bombo alrededor de la Inteligencia Artificial (IA) está directamente relacionada con la potencialidad para imitar o superar las capacidades del cerebro humano (en cuanto a volumen de datos manejados y velocidad de procesamiento) mediante el uso de los ordenadores. El neurocientífico Henry Markram en 2009 anunció un proyecto que pretendía simular el cerebro humano en una super-computadora con diferentes objetivos como «comprender la percepción o la realidad y tal vez incluso comprender también la realidad física».

La denominada «singularidad tecnológica» establece como la IA y la robótica nos sobrepasará a los humanos. Hay diferentes predicciones sobre cuándo ocurrirá este apocalipsis. Elon Musk coloca esta singularidad en 2025, el millonario ruso Dmitri Itskov en 2045, por citar varios ejemplos. El continuo avance de las capacidades de los microprocesadores también alimenta, erróneamente, este bombo de la IA. Si uno compara únicamente el número de neuronas (unos 86.000 millones) con el número de transistores del último chip M1 de Apple (16.000 millones) puede estar tentado de asegurar que la «capacidad de computación» del ser humano es fácilmente superable. Lo sé, las comparaciones son odiosas, y en este caso , muy atrevidas.

Hasta hace poco yo también me encontraba entre los expectantes de tales predicciones, pero con un grado de escepticismo razonable. Todo esto cambió para mí en lo más crudo del confinamiento del 2020. Andaba yo deambulando por YouTube en búsqueda de vídeos interesantes relacionados con la IA y llegue a uno muy curiosos y que da título a este post, y que atrajo mi curiosidad: 1la consciencia no es computable. En este vídeo, un más que lúcido Sir Roger Penrose, físico, matemático y filósofo, es entrevistado por el vlogger Lex Fridman, experto en IA y conducción autónoma.

He de decir que, aunque el nivel científico de lo expuesto en el vídeo es muy alto, la lucidez, detalle y afabilidad demostradas por Penrose, me atrapó y logró mantenerme atento durante toda la entrevista. Especialmente, hay una parte que me pega a la silla y me hace rebobinar varias veces para tratar de comprender con el mayor detalle posible. La entrevista empieza directamente con esta tesis demoledora (la mantengo en inglés por ser más fiel): «I´ m trying to say that whatever consciuosness is, it´s not a computation…it´s not a physical process which can be described by computation».

Durante la entrevista, Penrose explicó cómo su curiosidad por la neurofisiología le llevó a explorar los principios básicos de la física, la cosmología, las matemáticas y la filosofía en su libro de 1989 «The Emperor´ s New Mind» para proponer que el pensamiento humano nunca podría ser emulado por una máquina, en contra de las tesis «mainstream» de entonces acerca de cómo las computadoras usando «inteligencia artificial» pronto podrían hacer todo lo que un humano puede hacer.

¿Qué le lleva a asegurar de forma tan tajante la imposibilidad de emular la consciencia humana mediante un ordenador? ¿No se supone que juntando muchos chips de nuestros ordenadores podemos superar el número de neuronas de nuestro cerebro y su capacidad de computación ( si me permitís esa burda comparación)?. Igual que la vida no es un conjunto de células agrupadas en órganos, la «emulación» de las capacidades del cerebro no es una cuestión de agrupar un alto número de transistores y sus impulsos eléctricos. Todos recordamos las explicaciones de cómo las neuronas transportan la información a través de impulsos eléctricos. En su análisis de la fisiología del cerebro, Penrose, ni siquiera al final de su libro pudo llegar a explicar completamente como era posible que las señales nerviosas pudiesen transmitirse mediante impulsos eléctricos de forma coherente por el cerebro. Algo no le cuadraba o le faltaba en su teoría. Pero parece que, a un lector de su libro, el anestesiólogo Stuart Hameroff, fue al único que le cuadró. «Creo que te has olvidado de algo, ¿ no sabes lo que son los microtúbulos?» le dijo a Penrose. «Es lo que te falta para que funcione tu teoría». Los microtúbulos podrían ser la respuesta a la búsqueda de Penrose sobre una fuente no computable en la consciencia humana, desde un punto de vista fisiológico.

¿Pero qué demonios son los microtúbulos? Que me perdonen los biólogos moleculares, pero parece ser que son unas estructuras moleculares de forma tubular que encontramos en las diferentes células de nuestro cuerpo, desde los glóbulos rojos hasta las neuronas. Estas estructuras que «habitan» las interconexiones de nuestras células grises, tienen la propiedad de conservar de una manera muy efectiva su estado (estado de tipo cuántico, pero esto lo dejamos para otro post) y permiten que de alguna forma volvamos a ser los mismos que éramos tras una pérdida de consciencia, por ejemplo, después de una anestesia. Podríamos decir que estos microtúbulos son la unidad almacenamiento (cuántico) básico de nuestro cerebro. Algunos científicos los llaman «el cerebro de la neurona«.

Otra de las razones para poder aspirar a emular el cerebro ha sido poder replicar el número de conexiones que existen entre nuestras neuronas. Es un número bastante grande en realidad. Se estima que cada neurona posee un promedio de 1.000 conexiones. Con 86.000 millones de neuronas esto nos daría unos 86 billones de conexiones. Aunque los números dan vértigo, para algunos expertos parecen conseguibles con la capacidad de cálculo actual en operaciones por segundo (FLOP) de los procesadores. Volviendo al M1 de Apple, este procesador declara ser capaz de efectuar 2.6 TFLOP, 2.6 billones de operaciones por segundo (10 elevado a la 12 ceros). Otra vez, un número aparentemente «cercano» a nuestras conexiones si juntamos un montón de chips trabajando a la vez. Con la aparición fulgurante de chatGPT el debate está más candente que nunca. Sus capacidades ya son casi humanas y sus 175 mil millones de parámetros nos proporcionan una ilusión de comprensión. Pero parece que la consciencia es algo más que conexiones o parámetros de modelo matemático ¿no?

Si nos centramos únicamente en la cuestión cuantitativa y volvemos a los microtúbulos que habitan nuestras neuronas, ¿cuántos de ellos podemos tener? La neurobiología dice que algo más de 1.000 microtúbulos por cada una de nuestras 86 mil millones de neuronas, o sea, 86.000.000.000.0000 microtúbulos (86 billones, similar a las conexiones neuronales) que «almacenan la información cuántica» en la que algunos científicos afirman, reside nuestra consciencia. Podríamos decir en realidad que nuestro cerebro es un ordenador cuántico, ¿no os parece?. Vaya, siento caer de nuevo en una analogía computacional. Volvamos de nuevo a la tecnología para finalizar este post. IBM, promete un ordenador cuántico de 1.000 qubits para 2023. Bastante inferior a los 86 billones de microtúbulos de nuestra cabecita. En mi humilde opinión, y comparando solo aspectos cuantitativos de capacidades de computación actuales y futuras, la denominada singularidad tecnológica informática actual e inteligencia artificial se encuentra aún muy lejos o parece casi inalcanzable. No sé vosotros, pero yo todavía veo un poco lejos la singularidad tecnológica, ¿no os parece?


1 Capacidad del ser humano de reconocer la realidad circundante y de relacionarse con ella