Industria 5.0: ¿en serio?

Industria 5.0: ¿en serio?

Parece mentira, pero ya han pasado 5 años desde que en CARTIF inauguramos nuestro blog con el post sobre la Industria 4.0 en el que analicé algunas de las claves de la llamada “cuarta revolución industrial” y como podría afectar a la industria de nuestro país. Siempre me ha parecido arriesgado tratar de definir esta revolución desde dentro. Supongo que el tiempo y la perspectiva histórica nos dejara más claro si de verdad ha sido una revolución o simplemente un mantra tecnológico. Abróchense los cinturones porque, si aún no hemos asimilado esta revolución, ahora nos “amenazan” con la siguiente, Industria 5.0 la llaman. Original, ¿verdad?

Si la cuarta prometía interconectar los medios productivos de toda la cadena de valor para hacer una transición a la industria inteligente o Smart Industry (todo tiene que ser Smart como cuando hace muchos años cualquier electrodoméstico que se preciase necesitaba llevar “fuzzy logic”), la quinta revolución industrial, trata de humanizar el concepto más allá de solo producir bienes y servicios con fines de lucro económicos. El reto de esta revolución pretende incluir en su propósito consideraciones sociales y ambientales. Las palabras clave de esta revolución, según la definición de la Comisión Europea, deben ser: enfoque centrado en el ser humano, sostenibilidad y resiliencia.

Al desarrollar tecnologías innovadoras con un enfoque centrado en el ser humano, la Industria 5.0 puede apoyar y empoderar a los trabajadores, en lugar de reemplazarlos; asimismo, otros enfoques complementan esta visión desde el punto de vista del consumidor de tal forma que pueda tener acceso a productos lo más personalizados posibles o adaptados a sus posibilidades, de tal forma que conceptos como alimentación personalizada o ropa hecha a medida se apliquen virtualmente a cualquier producto de consumo.

La sostenibilidad en el desarrollo de la industria necesita compatibilizar los objetivos de progreso económico y ambiental. Para conseguir los objetivos ambientales comunes es necesario incorporar nuevas tecnologías e integrar las existentes repensando los procesos de fabricación introduciendo los impactos ambientales en su diseño y operación. La industria debe ser un ejemplo en la transición verde.

La resiliencia de la industria implica desarrollar un mayor grado de robustez en su producción, preparándola contra interrupciones y asegurando que pueda responder en tiempos de crisis como la pandemia de la COVID-19. El enfoque actual de producción globalizada ha demostrado una gran fragilidad durante la pandemia que nos asola. Las cadenas de suministro deben ser también suficientemente resilientes, con capacidad de producción adaptable y flexible, especialmente en aquellos aspectos productos que satisfacen necesidades humanas básicas, como la atención médica o la seguridad.

Al igual que la cuarta necesitaba de unos habilitadores digitales, esta nueva revolución necesita aspectos tecnológicos que la ayuden a materializarse. Desde un punto de vista práctico podemos decir que los habilitadores que revisamos hace un tiempo son de plena actualidad para la Industria 5.0. Podríamos incluir algunos adicionales como la computación cuántica o el block-chain, incipientes hace 4 o 5 años. Si los habilitadores son similares, ¿por qué estamos hablando de una nueva revolución? Es cuestión de prioridades. Si en la cuarta se habla de una hiper-conectividad de procesos al mundo digital a través de sistemas ciberfísicos o el IoT, en la quinta se busca una cooperación entre el humano y la tecnología digital, ya sea en forma de robots industriales colaborativos, robots sociales o sistemas de inteligencia artificial que complementen o ayuden en cualquier tarea relacionada con la producción, desde instalar una puerta en un coche o decidir cómo organizar el siguiente turno de trabajo para cumplir con el objetivo de productividad de la planta de fabricación.

Tecnología IoT para mejorar la eficiencia de las empresas industriales

Tecnología IoT para mejorar la eficiencia de las empresas industriales

Con la promesa de 75 mil millones de dispositivos conectados a Internet por todo el mundo en 2025, el ‘internet de las cosas’ (IoT) abre las puertas a un futuro de oportunidades para que las empresas optimicen sus procesos, ya sea en la forma de fabricar sus productos, supervisando su calidad o vigilando las máquinas críticas en las fábricas: hornos, líneas de fabricación o almacenes refrigerados.

En nuestro día a día como consumidores, nos podemos encontrar multitud de ofertas tecnológicas en dispositivos IoT que integramos en nuestras vidas de una forma rápida y, en ocasiones, impulsiva, ya sea por modas o beneficios reales. Sin embargo, la incorporación de estas tecnologías en las empresas no se realiza de una forma tan impulsiva, pues conlleva un estudio cuidadoso de factibilidad y rentabilidad, en muchas ocasiones complejo de demostrar, como sucede habitualmente con las tecnologías nuevas.

A estos factores, se une la flexibilidad del IoT para integrarse en las infraestructuras IT de las fábricas. La ‘i’ de IoT significa “internet”, lo que parece que lleva asociado automáticamente una conexión directa a Internet de “cosas” en las fábricas, y esto genera pánico por posibles amenazas de ciberseguridad para casi cualquier empresa. Para luchar contra estas barreras, la información y la formación son aspectos clave.

En este marco, se desarrolla el proyecto de cooperación transfronteriza España-Portugal IOTEC, que tiene como objetivo crear una red de colaboración de diferentes actores (investigadores, organismos públicos, proveedores de soluciones TIC y empresas industriales) de ambos países que facilite la creación e integración del IoT en las empresas. Los participantes en IOTEC hemos analizado diferentes empresas industriales y TIC para buscar carencias y fortalezas y poder así relacionar la oferta y la demanda de IoT. Desde CARTIF, coordinamos las actividades alrededor de las empresas industriales con el objetivo de conocer sus necesidades de IoT a través de un análisis detallado de sus procesos organizativos y productivos que incluyen la gestión, el diseño del producto, su proceso de fabricación y la logística.

Este análisis detallado incluyó la realización de una serie de auditorías tecnológicas a diferentes empresas agroindustriales, analizando el potencial de aplicación de IoT en diferentes partes de su proceso productivo. Se evaluaron 40 parámetros organizativos diferentes según la metodología definida dentro del proyecto IOTEC. Por ejemplo, en el apartado de los procesos de fabricación, se analizaron minuciosamente cuatro aspectos de gran relevancia:

  • El tipo de proceso o transformación productiva, que queda definido fundamentalmente por aspectos como las materias primas usadas o los pasos de fabricación.
  • Los requerimientos de trazabilidad de las materias primas, los productos intermedios y productos finales. Esta trazabilidad tiene especial relevancia en las empresas agroalimentarias.
  • El control del proceso de producción que se desencadena por diferentes mecanismos según la empresa: ordenes de producción, bajo demanda, disponibilidad de materias primas (e.g. vendimia).
  • La necesidad de captura de datos en planta como primera fase de digitalización completa de un proceso productivo.

Una vez analizados todos los parámetros, se realizó una clasificación exhaustiva de diferentes tecnologías IoT que podrían ser de aplicación en la industria y tener un impacto directo en la mejora de la eficiencia. A continuación, pueden verse dichas tecnologías:

Todas las tecnologías identificadas fueron priorizadas por los asistentes al «Foro de oportunidades de negocio a través de IoT y Blockchain» que tuvo lugar el pasado 14 de noviembre de 2018 en Valladolid. Los asistentes al evento tuvieron la oportunidad de reflexionar y votar sobre este conjunto de tecnologías para valorar su necesidad y la importancia de su difusión por parte del proyecto IOTEC. Una vez establecidas estas prioridades, ahora es necesario darlas a conocer para que los proveedores de soluciones IoT puedan adecuar sus ofertas a necesidades reales.

Asimismo, se trabaja en actividades de difusión y formación para acercar las tecnologías IoT y ejemplos concretos de su aplicación al conjunto de empresas industriales de las regiones de Castilla y León y Centro de Portugal participantes en la red IOTEC. Cualquier empresa proveedora o demandante de tecnologías IoT puede participar en el foro del proyecto y beneficiarse de forma directa a través de oportunidades de colaboración y formación en este apasionante conjunto de soluciones tecnológicas como es el IoT.

Nuevos desafíos en fabricación inteligente

Nuevos desafíos en fabricación inteligente

El Big Data como uno de los llamados “habilitadores digitales” de la Industria 4.0 es, sin duda, una de las tecnologías más prometedoras para contribuir a la revolución en las fábricas, lugares donde grandes cantidades de datos esconden una enorme cantidad de conocimiento y posibles mejoras para los procesos de fabricación.

La Agenda Estratégica de Investigación e Innovación (SRIA) de la Big Data Value Association (BDVA) define los objetivos generales, las principales prioridades técnicas y no técnicas y una hoja de ruta de investigación e innovación para la Asociación Público-Privada Europea (PPP) sobre Big Data. Dentro de las expectativas actuales del futuro Mercado de Datos en Europa (alrededor de 60 B€), la fabricación estuvo en primer lugar en 2016 (12,8 B€) y en las proyecciones para 2020 (17,3 B €).

La BDVA adoptó la definición del concepto «industria manufacturera inteligente» (SMI, del inglés Smart Manufacturing Industry), que incluye toda la cadena de valor alrededor de la producción de bienes. Identificó, además, tres grandes escenarios para representar las diferentes características de una SMI en Europa: Fábrica inteligente,  Cadena de suministro inteligente y Ciclo de vida del producto inteligente.

Dada la relevancia tanto del mercado de datos como de la industria manufacturera en Europa y de acuerdo con la iniciativa europea de Digitalización de la industria, CARTIF, junto con el resto de expertos de la asociación BDVA, se involucró en un esfuerzo colectivo para definir un documento de futuros retos de investigación para la industria manufacturera en el contexto de Big Data.

Para contextualizar estos desafíos de investigación, la asociación BDVA ha definido cinco áreas técnicas para investigación e innovación dentro de la comunidad BDVA:

  • Gestión de datos y ciclo de vida, motivado por la explosión de datos, donde los medios tradicionales de almacenamiento y gestión de datos ya no son capaces de hacer frente al tamaño y la velocidad de los datos generados.
  • Arquitecturas de procesamiento de datos, originadas por el rápido desarrollo y adopción de la internet de las cosas (IoT) y la necesidad de procesar cantidades inmensas de flujos de datos de sensores.
  • Análisis de datos, que tiene como objetivo el progreso de las tecnologías y el desarrollo de capacidades para convertir el Big Data en valor, pero también para que esos enfoques sean accesibles al público en general.
  • Protección de datos, que aborda la necesidad de garantizar el uso correcto de la información a la vez que garantiza la privacidad del usuario. Incluye tecnologías avanzadas de protección de datos, privacidad y anonimización.
  • Visualización de datos e interacción con el usuario, que abordan la necesidad de medios avanzados de visualización y de interacción con el usuario capaces de manejar continuamente la complejidad y el tamaño de los datos crecientes y ayudar al usuario a explorar y comprender el Big Data de manera efectiva.

A lo largo de 2016 y 2017, los expertos de la BDVA destilaron una serie de desafíos de investigación para los tres grandes escenarios de fabricación inteligente comentados anteriormente. Estos desafíos se mapearon en las cinco áreas de prioridad técnica del modelo de referencia de Big Data previamente comentadas.

Para ejemplificar los resultados de este mapeo, la siguiente figura reúne los títulos del conjunto de desafíos identificados y discutidos por los miembros de la BDVA para el Escenario Smart Factory. Se anima a los lectores interesados a analizar el conjunto completo de desafíos en el documento de orientación SMI.

Los desafíos establecidos inicialmente en esta primera versión del documento de orientación de SMI marcarán el tono para las próximas necesidades de investigación en diferentes áreas de Big Data relacionadas con la fabricación.

En el escenario Smart Factory, la atención se centra en la integración de múltiples fuentes de datos que provienen no solo del taller, sino también de las oficinas, tradicionalmente separadas en la Industria 3.0. La interoperabilidad de los sistemas de información existentes y el desafío de integrar tecnologías disruptivas de la IoT son pruebas importantes en el área de gestión de datos. Más cerca de las necesidades de una fábrica inteligente, los desafíos en analítica de datos se centran en el análisis prescriptivo como herramientas para un proceso de toma de decisiones óptimo en la gestión de operaciones de fabricación, incluida la optimización a través del nuevo concepto de gemelo digital.

Transformación digital de aquí a la Luna

Transformación digital de aquí a la Luna

20 de julio de 1969, son las 20:18:04 UTC y después de 102 horas, 45 minutos y 39.9 segundos de viaje, “el águila ha aterrizado” y Neil está a punto de descender por la escalera y tocar una superficie desconocida por primera vez: “Un pequeño paso para el hombre, un gran paso para la Humanidad”. Aquel 1969, Neil Armstrong, Michael Collins y «Buzz» Aldrin cambiaron la historia a bordo del mayor cohete construido con destino a la luna.

Muchos lo habrán olvidado, otros como yo ni siquiera habíamos nacido, pero la carrera espacial sufrió una transformación digital similar a la que perseguimos para transformar la industria. El programa Apolo fue la culminación de aquella primera revolución digital en la exploración del espacio.

El alunizaje fue conseguido en parte gracias a la electrónica a bordo del módulo lunar, el ordenador de navegación del Apolo (AGC, del inglés Apollo Guidance Computer). El ordenador AGC fue uno de los primeros ordenadores basados en circuitos integrados digitales. Con “apenas” 32 kgs de peso y unos 55W de consumo, esta maravilla técnica era capaz de coordinar y controlar muchas tareas de la misión espacial, desde calcular la dirección y los ángulos de navegación de la nave, hasta comandar los controles de posición por reacción y orientar la nave en la dirección deseada. Asimismo, el ordenador incluía una de las primeras demostraciones de control «fly-by-wire con los cuales el piloto no comandaba directamente los motores de la nave sino a través de unos algoritmos de control programados en el ordenador de vuelo. De hecho, el ordenador AGC fue la base para los siguientes controles “fly-by-wire” del transbordador espacial, así como de aviones militares y comerciales.

Pero como pasa con este tipo de innovaciones, no suceden de un día para otro sino a partir de innovaciones incrementales previas.

Durante los años 50, el MIT Instrumentation Laboratory (MIT IL) desarrolló el sistema de guiado de los misiles Polaris. Este sistema fue construido inicialmente con circuitos analógicos, pero decidieron empezar a usar circuitos digitales para garantizar la precisión requerida para calcular las trayectorias de los misiles y sus algoritmos de control.

Antes de que el presidente Kennedy fijase el ambicioso objetivo de “… viajar a la Luna en esta década …” siete años antes del primer alunizaje, y después de la puesta en órbita del Sputnik en 1957, el MIT IL comenzó un estudio de exploración de Marte mediante una sonda. El diseño de esta sonda sentó las bases del futuro sistema de guiado del Apolo e incluía varios giróscopos para orientar la sonda, un ordenador digital y un telescopio para orientar la sonda en relación a la Luna y las estrellas.

El lanzamiento del Sputnik avivó la ambición de los EEUU por ser el primer país en poner un hombre en el espacio, pero creó el debate público acerca del rol más adecuado para los pilotos en la carrera espacial. Una discusión similar a la actual respecto del rol del trabajador en las fábricas. ¿El astronauta debería ser otra “carga” más a bordo de la nave o tomar el control completo de la misma? Una vez que los pilotos de pruebas se ganaron la responsabilidad de tomar el control de las naves, numerosos test mostraron que era prácticamente imposible controlar todos los aspectos de las misiones debido a la las rápidas reacciones y la gran cantidad de mandos de control. Por lo tanto, los pilotos necesitarían algún tipo de ayuda automática y fiable, y esa fue una de las principales funcionalidades del ordenador AGC.

La fiabilidad se convirtió entonces en una de las principales preocupaciones de la misión. El programa Polaris tardó cuatro años en diseñar el control de guiado para un arma que debía permanecer en el aire durante varios minutos. La apuesta de Kennedy de poner un hombre en la luna en menos de siete años significaba desarrollar otro sistema de guiado y control para una nave espacial que debería funcionar sin fallos en un viaje de más de una semana de duración. Los niveles requeridos de fiabilidad eran, por lo tanto, más de dos niveles de magnitud superiores. Si un misil Polaris fallaba, se podría disparar otro. Un fallo en la nave espacial podría matar a un astronauta.

Mucha de la fiabilidad del viaje a la Luna estaría soportada por el ordenador AGC y en cierto momento del programa Apolo había demasiadas tareas planificadas (e.g. maniobras complejas) como para ser controladas con circuitos digitales independientes. Para llevar a cabo estas tareas hacía falta un software. Aunque este concepto apenas se tuvo en cuenta en el principio del programa Apolo, significó la diferencia entre el fracaso o el éxito de todo el proyecto. El ordenador AGC se convirtió en el interfaz entre el astronauta y la nave, que finalmente significaría que el ordenador “controlaba” la nave, una revolución para la época. Hoy en día, el software está en todas partes, pero en los años 60, el software era considerado como un conjunto de instrucciones en tarjetas perforadas. Los programas del ordenador AGC (fijados entre tres y cuatro meses antes de cada lanzamiento) estaban “cableados” mediante ferritas y cables en una memoria permanente (y muy fiable) pero ahorraron mucho tiempo, esfuerzo y presupuesto. De hecho, puede decirse que el software del Apolo era más un “firmware” utilizando la terminología actual.

El reto actual de revolucionar la industria a través de la transformación digital no puede ocurrir sin la ayuda de los denominados habilitadores digitales. Hace 48 años, los primeros circuitos digitales integrados y los primeros programas fueron los habilitadores que permitieron conseguir aquel  “pequeño paso para el hombre”. Hoy, el típico “la transformación digital no es una opción”, puede sonar a cliché o eslogan comercial, pero echando una mirada hacia atrás en la historia, la transformación digital del programa Apolo significó la diferencia entre poner o no poner la primera huella humana en la Luna.

Sistemas ciber-físicos. ¿Más cerca del ‘juicio final’ de Terminator?

Sistemas ciber-físicos. ¿Más cerca del ‘juicio final’ de Terminator?

“21 de abril de 2011. SKYNET, la súper-inteligencia artificial que tomó conciencia de su propia existencia hace dos días, lanza un ataque nuclear sobre toda la humanidad. El 19 de abril, SKYNET, un sistema formado por millones de ordenadores distribuidos por todo el mundo, inició un proceso geométrico de auto-aprendizaje. Esta nueva generación de inteligencia artificial llegó a la conclusión de que toda la raza humana intentaría destruirla para impedir su funcionamiento”

Parece que la visión apocalíptica mostrada en la película Terminator sobre las consecuencias de un avance desmesurado de la inteligencia artificial está lejos de convertirse en realidad, de momento. SKYNET, nuestra némesis en la película, estaba formada por servidores, drones, satélites militares, máquinas de guerra y robots “Terminator” con una misión: proteger el mundo.

Nuestro post está enfocado en una tarea muy diferente pero relevante: fabricar los productos del futuro. En nuestros posts previos, echamos un vistazo a los habilitadores digitales como ingredientes clave de la Industria 4.0. El último ingrediente clave, los denominados sistemas ciber-físicos, pueden considerarse como el “SKYNET” de la fabricación, y los definimos en su momento como una mezcla de las diferentes tecnologías habilitadoras. Ahora vamos a intentar ser un poco más específicos.

El término “ciber-físico”, de origen anglosajón, es el nombre compuesto que define una mezcla de sistemas físicos y virtuales (e.g. software) destinados a cumplir una tarea de gran complejidad. La rápida evolución de las TIC está permitiendo desarrollar servicios no necesariamente contenidos en las carcasas de los dispositivos electrónicos que compramos. Tomad como ejemplo los asistentes personales digitales como Siri de Apple, Alexa de Amazon o Cortana de Microsoft. Estos sistemas nos proporcionan ayuda con nuestras tareas diarias, pero no son meros programas instalados en nuestros dispositivos móviles. Son una mezcla de dispositivos hardware (nuestros móviles y servidores de internet) que miden señales (nuestra voz) y se comunican con programas en la nube que realizan el procesamiento adecuado y proporcionan unos milisegundos después una respuesta apropiada al contexto en el que nos encontramos. Los algoritmos almacenados en los servidores son capaces de procesar el habla utilizando sofisticados algoritmos de inteligencia computacional y crear la respuesta adecuada. La combinación de nuestros móviles, tabletas, servidores de internet (el lado físico) y algoritmos de procesamiento (el lado cíber) conforman lo que se denomina como sistemas ciber-fisicos o CPS (Cyber-Physical System). Este sistema evoluciona y mejora con el tiempo gracias a las millones de peticiones e interacciones (diez mil millones a la semana según Apple) entre los usuarios y los algoritmos de inteligencia computacional. Otros ejemplos de CPS pueden encontrarse en el sector energético, donde la red eléctrica formada por contadores inteligentes, transformadores, líneas de transmisión y centros de control forman la denominada Smart Grid.

La misma filosofía puede aplicarse al entorno industrial en el que las tecnologías de la información están siendo desplegadas en diferentes niveles de complejidad. El rápido desarrollo de la Internet de las cosas (IoT) junto con soluciones de análisis y cálculo en la nube, abren la puerta a todo un abanico de soluciones denominadas Industrial Analytics. Sin embargo, mejor que proporcionar explicaciones teóricas, veamos varios ejemplos de aplicación de los sistemas ciber-físicos (CPS) en las fábricas:

  • CPS para fabricantes de componentes (OEM) donde los componentes clave (e.g. robots industriales) serán analizados en tiempo real midiendo diferentes señales internas. Las ventajas serán múltiples, como por ejemplo, que el fabricante del robot sea capaz de analizar el grado de uso de cada robot y compararlo con otros robots en la misma o diferentes fábricas. Serán capaces de mejorar la próxima generación de robots o proporcionar consejos sobre el mantenimiento y actualizaciones (de hardware y software).
  • CPS para trabajadores: una compañía que proporcione servicios subcontratados, como por ejemplo el mantenimiento, será capaz de recoger información a pie de planta a través de dispositivos inteligentes y optimizar sus operaciones como llevar un detallado control de repuestos centralizado en lugar de mantener diversos almacenes dispersos en diferentes localizaciones.
  • CPS para fábricas: mediante la toma de información a pie de planta de diferentes líneas de fabricación (tiempo ciclo de las máquinas) es posible construir un modelo virtual de la fábrica y crear simulaciones en ordenador para ayudar en la toma de decisiones (optimización de procesos) o estudiar el impacto de cambios en líneas productivas (construir un nuevo modelo de coche en la misma línea) antes de decidir nuevas inversiones.

La combinación de soluciones virtuales y físicas abre la puerta a posibilidades ilimitadas de optimización de las fábricas.