The waters of innovation: How AI is Redefining Hydropower in Europe

The waters of innovation: How AI is Redefining Hydropower in Europe

The hydropower sector is a key driver of the energy transition in Europe. In 2022, renewable energies accounted for 41.2% of the total electricity consumption in Europe, with hydropower representing 29.9% of total renewable generation.

As more energy sources are integrated into the European energy landscape, hydropower plays an essential role due to its flexibility. While the generation from other renewable sources like solar or wind is subject to uncontrollable variable weather conditions, it is possible to decide when to turbine the water from a reservoir or river to generate energy. This way, the hydropower sector helps maintain stability in the electrical grid by balancing demand and generation.

Figure 1. Sources of renewable energy in gross electricity consumption in the EU, 2022, Eurostat

In addition to its fundamental contribution to reducing CO2 emissions, this type of energy offers other environmental and socio-economic benefits. It regulates river flows through its dams, acting against flood threats and providing water supply for human consumption and the agricultural sector. Moreover, it can affect the development of local economies by generating employment, retaining human capital, and creating tourist attractions.

Emerging as a fundamental solution in Europe’s energy transition, hydropower is not without challenges and risks: One of the major challenges in Europe is the high age of infrastructures (an average of 45 years compared to 30 years in regions like Asia-Pacific or 15 years in China1), causing inefficiencies in energy production, increased maintenance stoppages, and production costs due to the need for investment and repair.

Additionally, climatic events are making their effects felt in all regions of the world. In Europe, many areas are experiencing more frequent, intense, and prolonged droughts. In the second half of 2022, this situation became evident with a significant reduction in hydropower production, particularly noticeable in the south of the continent, where a near 15% decrease in production was recorded.

Figure 2. Evolution over time of Guadalquivir basin capacity, S.A.I.H Guadalquivir.

This situation necessitates addressing intelligent management of water and hydropower resources. The iAMP-Hydro project (intelligent Asset Management Platform for Hydropower), coordinated by Trinity College Dublin and involving CARTIF, emerges as an innovative response to the challenges facing the European hydropower sector.

Within the framework of the project, a package of digital solutions based on artificial intelligence will be developed, validated in five hydropower plants distributed between Spain and Greece. These solutions will assist plant operators in decision-making by considering environmental and socio-economic factors.

The project includes a predictive maintenance solution through the development of advanced sensors capable of real-time monitoring of the state of turbines and installations. These devices will collect data which, through deep learning-based AI algorithms, will predict possible malfunctions before they occur. This will not only significantly reduce maintenance costs by up to 10% but also enable optimal scheduling of planned shutdowns adjusted to market conditions and socio-economic needs.

Furthermore, a set of specialized sensors will monitor various biodiversity parameters, ensuring that plant operations have the minimum possible environmental impact.

Figure 3. Bermejales HPP, iAMP-Hydro project

Lastly, CARTIF is leading the use of artificial intelligence techniques and neural networks to create predictive flow models. These models are designed to analyze patterns in historical data, including climate, and will be able to anticipate the potential energy a hydropower plant can generate over the next 7 days. This anticipation will allow for up to 23% more efficient plant operation, ensuring water availability while minimizing waste. In extreme drought situations like those in southern Europe, predictive models are being implemented to assess the short- and medium-term recovery capacity of hydroelectric reserves, considering various climate scenarios and irrigation demands. These models will provide operators with a clear vision of the plant’s evolution in the medium term and allow them to optimize the selection of the most suitable turbines for each operational scenario.

Researchers predict that iAMP-Hydro will improve the environmental and socio-economic sustainability of the current hydropower fleet by reducing operating costs by €1000 million, cutting CO2 emissions by 1,260 tons, creating 10,000 future jobs, and enabling environmentally sustainable flow regulation through digital solutions.

Current estimates show that digitizing the existing 1,225 GW of hydropower worldwide could increase annual production by 42 TWh, equivalent to $5000 million in annual operating savings2.


1 IEA. Hydropower Special Market Report; International Energy Agency: Paris, France, 2021; p. 126

2 Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan & Quaranta, Emanuele & Schild, Philippe & Theodossiou, Nicolaos. (2019). Analysis of emerging technologies in the hydropower sector. Renewable and Sustainable Energy Reviews. 113. 10.1016/j.rser.2019.109257

Water guardians: innovative strategies to conserve our most precious resource

Water guardians: innovative strategies to conserve our most precious resource

Water security is an essential concept defined as ´the ability of humankind to protect sustainable access to water, ensuring well-being, livelihoods and socio-economic development´. This concept includes taking measures to protect the ecosystems that provide this vital resource and to secure the ecosystem services linked to water. It is not only about ensuring that there is enough water, but also that it meets high quality standards and meets the agricultural, industrial, energy and domestic needs of a specific region.

The preservation of environmental systems, which constitute the natural sources of water and related ecosystem services becomes essential.

The Global Water Partnership1, an international network dedicated to sustainable water management, describes a water secure world as one in which every person has access to safe and affordablewater for a healthy and productive life, and in which communities are protected from floods, droughts and water-borne diseases. It adds that water security promotes environmental protection and social justice in the face of conflicts over shared resources.

Source: Rául Sánchez Francés. CARTIF

The UN has sounded the alarm about the water deficit that is expected in the future. According to its estimates, by 2030 the Earth could face a 40% deficit if current consumption patterns are not changed. Population growth, especially in urban areas, has increased pollution that affects water quality, not only through air pollution, but also through changes in land use. Water consumption has doubled in the last half century, and it is estimated that by 2025 at least two-thirds of the world´s population will live in areas of high water stress.

Climate change also poses an additional risk to water security, reducing water availability and making it increasingly unpredictable in many parts of the world, leading to major supply problems. In addition, extreme weather events, such as droughts and floods, affect rich and poor alike, disrupting traditional livelihoods and production patterns.

In Castilla y León, water security is already a critical issue, given the importance of our agricultural sector in food production, twhich is highly dependent on a constatn supply of water. The region´s agriculture relies heavily on the production of cereals, wine and horticultural products, and is being affected by climate variability, including prolonged droughts that deplete water resources and jeopardise the sustainability of crops. Similarly, the region is experiencing increasing water stress aggravated by climate change, which threatens food production and affects the balance of the rural economy, thus increasing the already pressing problem of depopulation of our villages or rural environments.

Farmers face an increasingly difficult challenge: maintaining productivity in a context of limited water resources. Many have had to adapt their techniques, investing in efficient irrigation and crop diversification to mitigate the impact of droughts. However, these solutions come at a high cost that not everyone can afford, highlighting the urgency of finding more inclusive approaches. This is where Nature based Solutions (NbS) come in, offering a sustainable alternative to follow.

Source: CARTIF

Nature-Based Solutions are vital to address these problems in a creative way and at the same time provide additional sustainability benefits. UNESCO, in its World Water Development Report, argues that NbS can improve water supply and quality while mitigating the impact of natural disasters. A clear example is restored watersheds and wetlands, which act as natural filters for water purification. By mimicking natural processes, NbS improve water availability and quality and reduce water-related risks.

It is essential to highlight the importance of conserving wetlands and restoring river basins the region, as they act as natural filters, improving water quality and regulating flow in times of drought. Techniques such as agro-forestry and crop rotation can also be explored to maintain soil fertility and reduce dependence on intensive irrigation systems. These practices mimic natural processes and help maintain a balance between production and conservation.

The Global Water Security Index (GWSI)3 , which integrates criteria such as water availability, accesibility, security and quality, standardises water vulnerabilities and risks, helping to identify priority areas where action is urgently needed. This index also highlights the need for innovative strategies that combine green infrastructure with traditional solutions, maximising value for society.

Soluciones basadas en la naturaleza en Sassari
Proyecto NATMED. FIA system (Forested Infiltration Area). SbN implemented in Sassari (Cerdeña – Italia).  Source: Raúl Sánchez Francés.

It is also important to highlight the relevance and scope of water security in urban settings, where it encompasses five dimensions: environmental, domestic, economic, urban and resilience to natural disasters. All these aspects make the lack of water security one of the greatest risks to global prosperity and underline the urgent need to take care of the natural resource “water”. This implies sustainbale management, responsible consumption, combating degradation and reuse.

In the Natural Resources and Climate Area of CARTIF, we develop diverse projects related to sustainable water management as basis for water insurance, both for human consumption and for agricultural consumption.

We coordinate the PRIMA NAT-med project, in which we aim to develop, implement and validate a set of Nature-based Solutions, combined in Full Water Cycle-NbS (FWC-Nbs), integrated in existing water infrastructures (grey or natural) and based on specific phases of the water cycle, to optimise the provision of water-related ecosystem services (quality and quantity) and water-dependent ecosystem services (social, economic and environmental aspects), empowering stakeholders and local communities in the Mediterranean region. NATMed will also demonstrate the effect of different SbN-CCA in five case studies located in Spain, Greece, Italy, Turkey, Algeria.

Similarly, through our CIRAWA project coordination work, we work in 8 regions in Cape Verde, Ghana, Senegal and The Gambia to improve agriculture by developing new agroecology-based practices that build on existing local and scientific knowledge to help create more resilient food supply chains in West Africa, and where sustainable water resource management is essential.

Puntos de acceso al agua para agricultura. Proyecto CIRAWA
CIRAWA project. Access points to water for agriculture at the Maio Island (Cape Verde). Source: Raúl Sánchez Francés.

From the Natural Resources Area of CARTIF, like many other ´guardians of water`, we work to improve water security, using Nature-based Solutions, as part of our vital commitment to the future of the planet. Only through intelligent and collaborative management can we build a world in which every person has access to water and can live with dignity, ensuring that future generations will also enjoy it.


1 https://www.gwp.org/

2 WWAP & ONU-Agua. (2018). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2018: Soluciones basadas en la naturaleza para la gestión del agua. París: UNESCO.

3 Measuring global water security towards sustainable development goals

Food reformulation; a step forward, that it is possible

Food reformulation; a step forward, that it is possible

Currently, one of the factors directly associated with disease risk and mortality is unhealthy diets. These diets are characterised by low intakes of fruit and vegetables, whole grains, legumes, low in essential fatty acids, low in fibre and a high in sugar, salt, unhealthy fats and additives. These diets and low intakes of essential nutrients are even greater concern to more vulnerable groups, raising the need to embark on a path of change.

As part of the need to make food systems healthier and more sustainable, healthier and more sustainable diets are required in which foods are formulated in a way that is more in line with nutritional recommendations, consumer tastes, more adapted to the limits of the planet´s existing resources, the advancement and availability of technology, all within the framework of existing regulations.

The food industry has become one of the focal points of the global Sustainable Development Agenda due to its contribution to GDP and importance in food security in developed and developing countries. In the implicit need for commitment to the Sustainable Development Goals (SDGs), real efforts need to be made to ensure efficiency in the food industry. As part of this strategy, innovation represents an important resource of competitive advantage for the sector.

According to the World Health Organisation, reformulation is a critical strategy for achieving these SDGs and even more, wso on the premise that these foods should be affordable.

Reformulation or modification of the composition or processing of foods and beverages is the perfect option to improve them, replacing or eliminating those components that can be potentially critical for our health or increasing those that provide some benefit. Reformulation builds on the foundations of food technology, but needs innovation to take that step from existing foods to those with a more up-to-date and global concept in line with health and sustainability trends.

Thus, innovation in food development is crucial not only in bringing new products to the market, but also in improving and streamlining the food industry´s own processes and in its mission to satisfy consumer needs.

Ideally, in my view, the focus should be on creating products that contribute to a healthy diet within the compelling framework of current and future needs for process efficiency and integrating the use of technologies that facilitate this.

Thus, innovation in food products and reformulation includes improvement from a nutritonal point of view; salt, sugar or fat, to cite some well-known examples, or the incorporation of ingredients that increase their value, such as dietary fibre, vitamins and minerals.

First, we must focus on which are the aspects to be reformulated in order to integrate all the above-mentioned factors in this first point. In reality, there are many aspects to take into account, but we are going to pick out some of the most relevant ones:

  • Technological aspects: incorporation of ingredients to enrich or reduce the ingredients to improve the nutritional profile, ingredients to generate a functionality inside the product (texture, viscosity, conservation…) and the compatibility on the reformulation with the rest of ingredients, cost of production (ingredients, energy, water) needs of a special packaging, of a new technology.
  • Organoleptic considerations: improvement of sensory profile, texture and appearance.
  • Market trends: formats, sizes, increased shelf life, specific consumer demand (allergies, intolerances, etc.) demand for sustainability .
  • Other aspects: associated costs, impact on the environment, comersialitation vias, applicable regulations, etc.

As we can see, it is no doubt a complex venture to integrate all our desires into a single product.

In any case, and with the clear objective of where we want to go, we must take into account the type or types of ingredientes we are going to use in reformulation, how they are going to affect us from a technological point of view, the legislation that is applied to the product and the parameters related to safety and shelf life, and above all, the sensory acceptance by consumers.

The food industry must focus its efforts in alignment with health strategies and promote foods with a better nutritional profile, as well as being more sustainable and competitive. In this sense, aligning all the points that underpin this change includes the need to innovate in a smart, evidence-based way with healthier, more sustainable and safer foods where the use of technology and the integration of the circular economy are naturally present.

Paving this path between science and the market is CARTIF´s objective, where, from the Food area,we work on the generation of value proposals for the food industry, developing healthy and innovative foods that combine technical feasibility, economic profitability and always in line with consumer demand. In this way, also from theFood area we contribute to sustainable development in favour of a more prosperous society, with what we do best: innovate.

Beyond reality. Extended reality

Beyond reality. Extended reality

Imagine finding out that the pilot of your next flight will be using Apple Vision Pro while in command of the plane. Would you feel comfortable boarding that plane? If your answer is no, you might think the pilot is reckless and that your life is at risk. On the other hand, if your answer is yes, you probably know the potential of using this device in such a situation.

Recently, the world was caught up in this debate when a pilot in the United States was recorded using Apple Vision Pro during a flight1. The pilot claimed to have improved productivity with this device. However, he faced significant criticism and had to apologize after deleting the video.

Why did this case cause so much outrage? In reality, many sectors use these types of devices daily, such as surgery, architecture, engineering, and training. The reason is simple: we are progressing. Although humans are skeptical of new technologies, we recognize that they can improve our lives. A clear example is e-commerce; when it started, many people thought it was dangerous. Now, Amazon is the fifth most valuable company in the United States, and in Spain, 39% of the population shops online at least once a month2.

It’s likely that over time, this feeling will also dissipate in the case of extended reality. This term, which encompasses virtual reality, augmented reality, and mixed reality, can be confusing for many. Each technology serves a specific purpose based on the level of immersion: virtual reality creates entirely digital environments, augmented reality overlays digital elements onto the physical reality, and mixed reality combines both to provide spatial awareness to digital elements. This concept is best understood when looking at the following image.

Differences between virtual reality, augmented reality and mixed reality. Source: Avi Barel3

In the image, you can see how in mixed reality, an object like a rubber duck can recognize its surroundings and position itself behind a table instead of going through it as it would in augmented reality. This is the magic of mixed reality!

Although Apple Vision Pro has incredible features, similar devices have existed for a long time, something that CARTIF is well aware of. That’s why in the Industrial and Digital Systems Division, we have long been using the Microsoft HoloLens 2 mixed reality device for various purposes.

In the Baterurgia project, we are using this technology to automate the disassembly of electric car batteries and promote human-robot interaction. To achieve this, we rely on robotics and computer vision to detect screws present in a battery. Through the lenses of the Microsoft HoloLens 2, the operator sees holograms indicating the position of the screws in space. The operator can select a screw with a finger or gaze and issue instructions to the robot via voice commands. The system provides feedback on the progress of the activity, allowing the operator to perform other tasks simultaneously.

Secuence for picking up a screw (Recorded with Microsoft HoloLens 2)

  1. Display of the camera image showing detected screws.
  2. Identification and marking of the screws.
  3. The operator selects a screw.
  4. The robot picks up the selected screw.

As you have seen, mixed reality is gaining popularity and being applied in more sectors. The high cost of products like Apple Vision Pro and Microsoft HoloLens 2, which are around $3500, is a significant limitation. However, new more affordable devices like Meta Quest 3, which costs around $500, are making this technology more accessible for companies and users. Along these lines, it is projected that the global sales of extended reality devices will increase to 105 million by 20254 .

If this post has intrigued you and you wish to explore more about extended reality and its impact, I’d be happy to share more information with you!


1 J. Serrano, «Video of Man ‘Flying’ Plane While Wearing the Apple Vision Pro Sparks Outrage,» GIZMODO, 7 Febrero 2024. Available: https://gizmodo.com/pilot-flying-plane-apple-vision-pro-video-stunt-1851233997

2 Statista, «Frecuencia con la que los consumidores compran online al mes en España en 2023». Available: https://es.statista.com/estadisticas/496519/frecuencia-de-compra-mensual-en-comercio-electronico-de-espana/

3 A. Barel, «The differences between VR, AR & MR,» Medium, 7 Agosto 2017. [En línea]. Available: https://medium.com/startux-net/the-differences-between-vr-ar-mr-27012ea1c5

4 Statista, «Ventas de auriculares/gafas de realidad extendida (RE) en todo el mundo desde 2016 hasta 2025». Available: https://es.statista.com/estadisticas/1307118/envios-de-auriculares-de-realidad-extendida/

REHOUSE. Working towards accelerating the EU building renovation rate

REHOUSE. Working towards accelerating the EU building renovation rate

In a world where sustainability is increasingly at the forefront of our concerns, the need for innovative solutions to transform our built environment is more pressing than ever. The current state of the EU building stock presents a significant challenge, acting as one of the largest energy consumers in Europe and responsible for over one third of the EU’s emissions.

Recognizing the urgency of the situation, the European Commission unveiled a new strategy in October 2020: “A Renovation Wave for Europe – Greening our buildings, creating jobs, improving lives.” This strategy represents a crucial step forward, aiming to incentivize investments in renovation and support the implementation of efficient methods and technologies.

Despite these efforts, the reality remains stark – over 75% of the EU building stock is not energy-efficient, and the annual renovation rate languishes at a mere 1%. The strategy emphasizes the need for deep renovations, those achieving over 60% reduction in energy consumption, as a top priority. The overarching goal? To double annual energy renovation rates over the next decade, not only to reduce emissions but also to enhance the quality of life for building occupants and create green jobs in the construction sector.

To achieve the depth and volume of renovation required, a strong and competitive construction sector is essential. Embracing innovation and sustainability is paramount to increasing quality and reducing production and installation costs. The Built4People European Partnership highlights three pillars crucial to this endeavour:

  1. Industrialized Technological Solutions: Embracing advanced technologies to streamline construction processes.

  1. Digitalization of the Construction Industry: Leveraging digital tools such as Building Information Modelling (BIM) to improve transparency and efficiency.

  1. Integration of Circularity Principles: Incorporating circular economy principles across the entire value chain, from materials sourcing to waste management.

In the midst of this pressing need for renovation innovation, REHOUSE emerges as a beacon of hope. Coordinated by CARTIF and under the Horizon Europe program, REHOUSE is poised to lead the charge in innovation within the construction sector. With a laser focus on deep renovations and circularity principles, REHOUSE aims to develop and demonstrate eight renovation packages incorporating promising technology innovations up to TRL7 (Integrated pilot system demonstrated).

These renovation packages are meticulously designed to overcome the main barriers that impede current EU renovation ratios. Through the integration of active/passive elements, prefabrication, and off-site construction, REHOUSE seeks to deliver affordable and sustainable renovation solutions with the flexibility to address nearly 100% of building renovation challenges at the EU level.

But what truly sets REHOUSE apart is its people-centric approach. By actively engaging residents and building owners throughout the renovation process, the project ensures that solutions are not only sustainable but also affordable, satisfactory, and attractive.

REHOUSE is now at its halfway point, demonstrating remarkable progress and achievements. The project has already established the basis for the social innovation strategy, detailed the specifications of innovative solutions, and produced digital versions of the Renovation Packages. Additionally, an innovative evaluation framework and technical building diagnosis of the demo-sites have been completed. The validation of the Renovation Packages (RPs) is underway to achieve TRL6 (Prototype system verified), accompanied by the development of guidelines for their industrialization. Furthermore, the project is actively defining specifications for the Digital Building Logbook, designing and preparing the groundwork for the later construction of the demo-sites, and outlining the pathway towards market achievement after the project concludes. These efforts mark the beginning of our journey to revolutionize renovation processes, driven by innovation and collaboration.

Join us on this transformative journey as we pave the way for a brighter, greener tomorrow with REHOUSE. Together, we can reshape our built environment, create sustainable spaces, and preserve our planet for generations to come.


This project has received funding from the European Union´s Horizon Europe research and innovation programme under grant agreement No 101079951.

Central Asia, from its history marked by the silk route, to its present and promising future as a sources of renewable energy sources

Central Asia, from its history marked by the silk route, to its present and promising future as a sources of renewable energy sources

If any of us were asked what we know of Central Asia, perhaps we could say it’s a geographical region located in the heart of the Asian continent made up of several countries that emerged from the disintegration of the USSR. We might even be able to name some of them and even highlight the great ethnic and cultural diversity of the area, or its wealth of natural resources, especially natural gas and oil. But, above all, most of us are reminded of the importance of this region in history because of the Silk Road, an ancient trade network connecting East and West. What maybe few people know is the key role that this region now plays in the global energy landscape.

Made up of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan, the region, which is home to a population of over 70 million people, with projections to reach 90 million by 2050, is characterised by a diversity of landscapes, from high pastures and mountains to vast deserts and steppes, and several transboundary rivers, making the region independent in terms of water, energy and food. But the distribution of these resources, is not uniform; while the upstream countries – Kyrgyzstan and Tajikistan – are rich in water resources, the downstream countries – Kazakhstan, Turkmenistan and Uzbekistan – are rich in hydrocarbons. Thus, after the collapse of the Soviet System and the emerge of borders between them, these countries face huge challenges in terms of economic and political development, as well as environmental challenges related to the management of their natural resources, mainly in the water use, both for energy generation and agricultural demands, between upstream and downstream countries (because if the first ones consume too much water, the latter do not get enough to meet their demands in the same way as the first ones did).

Small hydropower is based on harnessing the kinetic energy of water, such as riverbeds, small waterfalls or irrigation canals, to generate electricity in a small hydropower plant. In the study region, small hydropower offers a great opportunity to take advantage of the presence of numerous rivers and streams to generate electricity in a sustainable and decentralised way, while providing local communities with an economic source of diversified energy generation. However, it is important to carefully assess the environmental and social impacts of each initiative in each of the countries in the region, as well as to ensure proper planning and management to avoid potential conflicts and ecological damage.

Central Hidroeléctrica Vectores por Vecteezy

In recent years, the five Central Asian countries have been engaged in detailed studies to exploit their renewable energy sources, which is why small-scale hydropower feasibility studies have been carried out in the region with different results and implementations to date, rehabilitating dams or building new ones.

Bases on these studies, we can infer that Tajikistan and Turkmenistan show a large hydropower potential, but only a tiny fraction has been exploited to date. On the other hand, Uzbekistan faces challenges due to altered river flows, while Turkmenistan has only sparsely developed hydropower capacity. Kazakhstan is working to increase its renewable energy capacity, including hydropower. In summary, each country it’s implementing specific initiatives to harness its hydropower potential and improve its energy infrastructure, but they continue to face challenges related to the unequal distribution of water resources.

At CARTIF, though the Hydro4U1project, we are supporting the region to address this huge challenge in order to ensure a sustainable supply of water, energy and food as well as to develop resilience to climate change, all aligned with the achievement of the Sustainable Development Goals (SDGs). To this end, we are developing a system dynamics model to study the Water-Food-Energy Nexus (WFE) interlinkages and assess how the implementation of certain policies will affect energy and water security and the climate (or the fight against climate change) in these countries. It should be noted that our main objective, apart from the mentioned above, is to maximise the production of renewable electricity through the deployment of small-scale hydroelectric power plants, always ensuring the first instance the coverage of the remaining water demands (population supply, food production, industrial, etc.), taking into account the different climate change scenarios that the scientific community is considering (SSP126, SSP245, SSP585) to see their impact on the availability of water resources.

A complex challenge that is yet to be achieved!


1 This project has received funding from the European Union’s Horizon 2020 research and innovation under grant agreement No 101022905