Digitalizar la construcción para preparar su futuro

Digitalizar la construcción para preparar su futuro

Iniciativas públicas como ‘Industria Conectada 4.0’ están articulando medidas que permitan al tejido industrial beneficiarse del uso intensivo de las TICs en todos los ámbitos de su actividad. Estas iniciativas están ligadas al término Industria 4.0, que hace referencia al reto de llevar a cabo la 4ª Revolución Industrial a través de la transformación del sector industrial mediante la incorporación de tecnologías habilitadoras: impresión 3D, robotización, sensores y sistemas embebidos, realidad aumentada, visión artificial, mantenimiento predictivo, ciberseguridad, trazabilidad, big data, etc.

El sector de la construcción, como el industrial, está inmerso en una profunda metamorfosis ante la irrupción de estas nuevas tecnologías. La crisis económica ha sido muy intensa en este mercado. Como estrategia para su recuperación debe afrontar su particular revolución, aprovechando al máximo las oportunidades que ofrecen las tecnologías habilitadoras. De ahí surge el concepto ‘Construcción 4.0’, que hace referencia a la necesidad de digitalizar la construcción mediante la incorporación de tecnologías habilitadoras adaptadas a sus particularidades.

En el sector de la construcción (como en el industrial) es la primera vez que una revolución se construye “a priori”, lo que nos da la oportunidad tanto a empresas como a centros de investigación, de participar activamente en el futuro.

En CARTIF trabajamos en esa línea a través de proyectos que aplican estas tecnologías. En el caso del BIM, (Building Information Modeling) que propone gestionar el ciclo completo de los proyectos a través de una maqueta digital 3D, desarrollamos mejoras para incluir a todos los actores de la cadena de valor.

En cuanto a la impresión 3D, metodología que permite construir los objetos capa por capa, consiguiendo piezas singulares o con geometrías complejas, CARTIF aplica tecnologías para la impresión directa sobre superficies verticales para la rehabilitación de fachadas.

Si hablamos de robotización, además de crear robots específicos para ciertas tareas, se adaptan máquinas existentes aumentando su autonomía y la seguridad de los operarios. En esta línea, colaboramos en desarrollar tecnologías de monitorización y navegación para el guiado automático de maquinaria y para detectar situaciones de riesgo entre maquinaria y operarios.

Con todas estas innovaciones, el futuro de la construcción se presenta prometedor, siempre que se tenga en cuenta la investigación como base imprescindible para su crecimiento.

Mejorando nuestras ciudades con TICs

Mejorando nuestras ciudades con TICs

En la Unión Europea un 40% del total de la energía final se consume en los edificios residenciales y del sector terciario. Es por ello que desde Europa se han creado diferentes directivas para que los Estados Miembros diseñen estrategias a largo plazo con el objetivo de fomentar la renovación de edificios residenciales y comerciales aplicando criterios de eficiencia energética. Para poder definir estrategias eficientes, éstas deben ser establecidas de una forma holística, pensando más allá de edificios aislados: en términos de distritos y también de ciudades. Debido a esto son cuantiosos los proyectos de investigación que indagan en la mejor manera de realizar esta rehabilitación para obtener los resultados deseados.

Sin embargo, la definición de una estrategia de rehabilitación para un barrio o una ciudad no es trivial y existen numerosos factores que deben ser analizados antes de llevar a cabo la intervención. Aunque los objetivos a conseguir suelen ser claros (reducción en el consumo de energía, reducción en la emisión de gases contaminantes, introducción de energías renovables…) el camino para la consecución de esos objetivos es variable y distintas medidas pueden ser aplicadas en un mismo escenario con diferente grado de éxito. El análisis de las medidas más eficientes en términos de coste-beneficio necesita de una cantidad considerable de información sobre la zona a considerar y de la realización de una serie de cálculos complejos que nos permiten obtener unos indicadores asociados a las distintas posibles intervenciones a realizar.

Es en este punto donde el uso de tecnologías TIC aporta un valor añadido: realizando los cálculos a través de herramientas de simulación (tanto energética como de cálculo de costes y aspectos ambientales entre otros). Los análisis de los posibles escenarios resultan más precisos y además se automatizan procesos que de forma manual resultarían tediosos y proclives a fallos. Sin embargo, aunque existen distintas herramientas para realizar las simulaciones, no hay en la actualidad una herramienta que permita un diseño de proyectos de rehabilitación de forma automatizada.

En este sentido, en CARTIF trabajamos en varios proyectos orientados a la creación de este tipo de herramientas para el diseño de proyectos de rehabilitación en ciudades, como el recién iniciado Nature4Cities o el proyecto OptEEmAL  en el que se lleva trabajando desde 2015. Ambos están financiados por la Comisión Europea dentro del programa Horizon 2020.

El proyecto Nature4Cities propone el desarrollo de una herramienta para la ayuda al diseño de proyectos de rehabilitación energética en entornos urbanos mediante la aplicación de soluciones basadas en la naturaleza (Nature Based Solutions – NBS), soluciones explicadas por mis compañeros en un post anterior.

Por otra parte, el proyecto OptEEmAL se centra en desarrollar una plataforma de diseño de proyectos de rehabilitación energética a nivel de distrito. Trabajando con los datos de entrada proporcionados por el usuario (BIM, CityGML y otros datos) la plataforma OptEEmAL de forma automática genera y evalúa posibles escenarios de rehabilitación basados en la aplicación de una serie de medidas de conservación de la energía.

Dichas medidas están recogidas en un catálogo de acuerdo a un modelo de datos basado en estándares (como IFC). Las soluciones incluidas en este catálogo son tanto de tipo pasivo (mejoras de la envolvente, cambio de ventanas), como de tipo activo (relativas a los sistemas de generación de energía, energías renovables o estrategias de control) y se aplican tanto a nivel de edificio como a nivel de distrito. Estas medidas podrán ser soluciones genéricas con valores establecidos por defecto o soluciones específicas proporcionadas por casas comerciales.

Para la evaluación de los distintos posibles escenarios se analiza una serie de indicadores de rendimiento, que se catalogan en distintas categorías: energéticos, de confort, medioambientales, económicos, sociales y urbanos. Una vez la optimización ha tenido lugar se muestran al usuario las soluciones que ofrecen mejores valores de la evaluación de los indicadores. La plataforma OptEEmAL suministra al usuario información detallada del proyecto de rehabilitación seleccionado, con un alto nivel de precisión.

En CARTIF seguiremos trabajando en esta área de conocimiento con el compromiso de ayudar en la búsqueda de la eficiencia energética y, en definitiva, de mejorar las ciudades y lugares donde vivimos.

Ingeniería inversa en dinámica estructural

Ingeniería inversa en dinámica estructural

En los últimos años, con el abaratamiento de nuevas técnicas instrumentales y el desarrollo de los correspondientes algoritmos computacionales, están apareciendo multitud de trabajos basados en escaneado 3D y fotogrametría tendentes a obtener especificaciones técnicas de sistemas mecánicos o estructurales, las cuales no están disponibles por distintas razones. Aunque en el proceso ingenieril directo lo normal es disponer de los informes técnicos y de los planos del producto previamente a su construcción, la realidad es que las edificaciones antiguas no están documentadas o, si lo están, es bastante habitual que la ejecución de las mismas no se corresponda con lo proyectado. Y aunque así fuera, el paso del tiempo puede haber provocado diferencias en el comportamiento de los materiales por fatiga mecánica o agresiones químicas o haber sufrido daños localizados, asentamientos de los apoyos u otras patologías estructurales comunes.

Con frecuencia, los datos obtenidos se centran en dimensiones geométricas y características superficiales como rugosidad y color. Una de las aplicaciones más claras es la reconstrucción tridimensional de construcciones arquitectónicas, bien de edificación para posibles rehabilitaciones o elaboración de planos informados (BIM) o con fines de archivo del patrimonio histórico o industrial.

Pasarela peatonal estadio balear (Mallorca)

Aun siendo de gran utilidad los datos geométricos adquiridos, en ingeniería estructural no son suficientes y es necesario añadir información sobre las características de los distintos materiales de construcción, las uniones entre los mismos y su posible interacción con los soportes y el terreno.

Afortunadamente, también se están haciendo más accesibles tecnologías que permiten extraer cierta información adicional. En esta entrada se verá cómo mediante sencillos registros de aceleración y algoritmos de identificación y de actualizado computacional, se puede completar la información geométrica y disponer de las especificaciones técnicas necesarias que permitan conocer el comportamiento dinámico de la estructura bajo estudio. Estos procedimientos no requieren ensayos destructivos y, en el supuesto de que estos fueran viables, dichos ensayos no proporcionarían la información buscada a pesar de su mayor coste económico.

En primer lugar, comentar que la captura geométrica realizada, con independencia de su precisión dimensional, hace referencia a un determinado estado de carga sobre la estructura (al menos el debido a las acciones gravitatorias) y corresponde a una determinada temperatura ambiente. Ambas condiciones afectan significativamente en estructuras esbeltas como puentes o torres de tendido eléctrico. Además, en general, estas construcciones experimentan inevitables oscilaciones debidas a acciones ambientales que pueden también afectar a la precisión dimensional registrada.

En segundo lugar es interesante tener en cuenta que en ingeniería estructural y en construcción de obras civiles es usual recurrir a componentes comerciales (perfiles, encofrados, tuberías, farolas) de dimensiones discretas conocidas. Esto habilita la posibilidad de proceder a escalados adaptativos que permiten mejorar la precisión dimensional o su refinamiento local. De esta manera no serían necesarios registros dimensionales exhaustivos y se podría recurrir a sistemas de bajo coste tanto instrumental (cámaras) como de equipos informáticos necesarios para su postprocesado.

Registros de aceleramiento en cuatro puntos

Teniendo en cuenta lo anterior y presuponiendo ciertas habilidades para el modelado computacional en construcciones de este tipo, es posible disponer de un modelo preliminar de la estructura. Sobre este modelo, el método de los elementos finitos permite estimar la deformación incremental debida a ciertas cargas o acciones térmicas y mediante correlaciones adecuadas comenzar a estimar ciertos parámetros internos (densidad efectiva, rigidez, daño, etc.). No obstante la metodología cobra especial importancia cuando se combina la información anterior con datos modales. Para ello lo primero es disponer de los modos propios identificados experimentalmente (mediante análisis modal operacional, post-procesando los registros de aceleración ante cargas ambientales) y posteriormente seleccionar ciertos parámetros del modelo computacional. Ahora se trata de ajustar el valor de dichos parámetros (mediante rutinas de optimización y en función de la sensibilidad de cada parámetro y su rango de valores admisibles) para que casen los modos experimentales con los calculados computacionalmente. En este proceso se deben tener en cuenta no solo las formas modales más representativas sino también sus frecuencias y amortiguamientos modales.

Una vez determinados los valores de dichos parámetros se consigue disponer de un modelo a partir del cual poder no solo generar la correspondiente documentación técnica de la estructura real sino poder estimar su vulnerabilidad ante cargas accidentales, evaluar la vida útil o conocer la efectividad de diversas medidas de conservación, entre otras aplicaciones, entrando en lo que se conoce como re-ingeniería estructural, de cuyas ventajas se podrá hablar próximamente.

Industria 4.0: ¿Está preparada la industria española?

Industria 4.0: ¿Está preparada la industria española?

Tratar de definir una tendencia de moda es como intentar elegir la cámara perfecta; cuando te has comprado lo último en tecnología, tu cuñado aparece con el doble de megapíxeles. Pero esta vez nos toca hablar de Industria 4.0, también conocida como la cuarta revolución industrial. Este paradigma persigue una implantación de las tecnologías de la información en la industria con el objetivo de que los medios de producción se interconecten para así facilitar la transición hacia una industria «inteligente» (o Smart Industry como dice mi cuñado). Por ponernos en contexto, Industria 1.0 y 2.0 se asocian al primer telar mecánico y la primera cadena de montaje, respectivamente.

Un momento, ¿pero es que las máquinas de la fábrica donde trabaja mi cuñado no están ya interconectadas? La respuesta es, depende. En una fábrica (tipo Industria 3.0) con un nivel de automatización razonable, los medios de producción ya están interconectados. Las soluciones tecnológicas actuales ya establecen una jerarquía en la que los diferentes niveles de conectividad (dentro de la fábrica) están fijados, desde el sensor que informa del estado del proceso, hasta el software usado en los niveles más altos de toma de decisión (por ejemplo,  para la planificación de negocio o la logística). Sin embargo, la visión Industria 4.0, establece una interconexión mucho más amplia, en la que los medios productivos interaccionan no solo en el propio entorno de la fábrica, sino en toda la cadena de valor a la que pertenecen: proveedores, clientes, logística, etc.

En nuestro día a día, esta hiper-conectividad que se buscan en la Industria 4.0 ya es una realidad: recibimos ofertas y publicidad personalizada en nuestro smartphone o compartimos/generamos información personal o profesional a través de internet (haced la prueba y buscad vuestro nombre en Google). Por lo tanto, ¿qué beneficios puede obtener una compañía o fábrica si abraza el concepto Industria 4.0? Son muchos y variados, (aparte del consabido aumento de la competitividad):

  • Muchos “Me gusta” en Facebook (es broma).
  • Innovación de forma continua y colaborativa (en la cadena de valor) en el proceso y producto fabricado (mi proveedor innova en su maquinaria y yo mejoro mi proceso).
  • Acceso a nuevos modelos de negocio (productos personalizados).
  • Rápida reacción y adaptación a cambios del mercado (oferta o demanda).

La siguiente pregunta que surge es si la industria española está preparada. Dada la gran variedad de sectores y compañías con diferentes grados de madurez tecnológica, la respuesta no es única. Lo que sí se puede asegurar es que las tecnologías necesarias para esta revolución ya están disponibles: sensores de grandes prestaciones y bajo coste, sistemas embebidos, tecnologías de procesamiento de datos y extracción de conocimiento, algoritmos de encriptación o cifrado entre otras.

¿Qué le falta entonces a la industria española para dar el salto? Como pasa con muchos avances, estos suceden más rápido de lo que somos capaces de asimilar. Hasta hace poco tiempo, todos teníamos algún amigo o familiar que se negaba a tener un smartphone. Es la resistencia natural del hombre (de la mujer menos) a los cambios. Además, existe un déficit formativo que ya se empieza a tratar de suplir mediante programas multidisciplinares que tienen en cuenta la robótica, el diseño industrial, la programación, etc. Sin embargo, no se puede esperar a que estas nuevas generaciones terminen de formarse (nuestros competidores no lo han hecho). El momento es AHORA.

Los actores clave en esta revolución se localizan en todos los ámbitos: las grandes empresas como creadoras de necesidades y tractoras del resto o los fabricantes de bienes de equipo como proveedores de maquinaria productiva en casi cualquier sector. Estos bienes de equipo ya han empezado una “innovación colaborativa” silenciosa. Las experiencias que un fabricante de maquinaria introduce como consecuencia de la experiencia en un sector o cliente concreto, tarde o temprano se trasladan como innovaciones a la siguiente «versión» que de una forma u otra acabarán en otra fábrica.

Mediante la «hiper-conectividad» que fomenta la Industria 4.0 se busca acelerar este proceso de innovación (no solo de los fabricantes de maquinaria) de tal forma que por ejemplo, las máquinas productivas tengan la inteligencia suficiente para proporcionar información en tiempo real de su estado que sea útil para el propio fabricante (por ejemplo,  mejorar diseño), la industria en la que estén conectadas (información de su rendimiento energético o mantenimiento) o incluso el fabricante de componentes de estas máquinas (información de la fiabilidad de componentes individuales). Pero estas máquinas «inteligentes» no solo proporcionarán información relevante sino que tendrán la capacidad de influir en el proceso productivo de forma automática para optimizarlo.

Los conceptos clave para esta revolución son variados y tienen también nombres exóticos (de los que le gustan a mi cuñado): sistemas cíber-físicos, Internet de las Cosas o Big Data por citar los más conocidos. Pero serán materia de artículos posteriores.