MOBILITIES FOR EU

MOBILITIES FOR EU

A year ago, at the beginning of 2023, at CARTIF we started one of those great projects that leave a footprint (although if we talk in terms of emissions, the idea is actually to reduce them), NEUTRALPATH. In it, the cities of Zaragoza (Spain) and Dresden (Germany) are developing PCED (clean and positive energy districts) with the aim of becoming pioneering cities in the European Union in terms of climate neutrality and zero pollution by 2030. Istanbul, Vantaa and Ghent join the two aforementioned cities in NEUTRALPATH with the idea of scaling up and replicating methodologies and results in their own city plans.

For those of you, seasoned readers, who are loyal followers of this blog, the idea of climate neutrality and zero pollution in Europe with a target date of 2030 will surely ring a bell. Indeed, NEUTRALPATH is one of those few projects funded by the EU under the umbrella of the “100 climate-neutral smart cities by 2030” mission. The EU has set out to become climate neutral by 2050, and this Mission aims to support, promote and showcase the transformation of 100 pioneering European cities to become climate neutral by 2030, turning them into centres of experimentation and innovation for all other European cities, acting as a mirror for them to look up to and learn from.

Within this framework, research and innovation projects are funded that address:

  • Clean mobility, e.g. through the use of non-greenhouse gas emitting means of transport, such as electric vehicles or hydrogen or other alternative fuel vehicles, the use of bicycles, scooters and other non-motorised means of transport.
  • Energy efficiency through the use of technologies and practices that reduce energy consumption and greenhouse gas emissions in buildings and industry through equipment and envelope renovations and the use of renewable energies;
  • Green urban planning with measures related to the promotion of green spaces, the use of sustainable building materials or the promotion of biodiversity among others.

With these mission projects, the EU also aims to encourage the creation of joint initiatives, cooperation between projects and increased partnerships in synergy with other EU programmes.

Among the 100 cities finally selected to participate in the mission, seven are Spanish: Madrid, Barcelona, Seville, Valencia, Valladolid, Vitoria-Gasteiz and Zaragoza. In CARTIF we are fortunate to have worked directly in different smart city projects with many of them: Valladolid, through REMOURBAN among others, Vitoria-Gasteiz, within SMARTENCITY, Valencia, as part of MATCHUP, or the aforementioned Zaragoza of NEUTRALPATH.

Well, with the recently launched 2024, CARTIF is also launching another of these great reference projects of the mission: MOBILITIES FOR EU, in which two cities that already have the hallmark of mission cities, Madrid and Dresden, will carry out different actions over the next five years to contribute significantly to their transformation towards climate neutrality. I think the name of the project leaves little doubt about the scope of these actions, don’t you think?

For a long time now, we have been hearing various messages about the importance of implementing changes in the form and means of transport we use on a regular basis. So-called sustainable mobility is nowadays a key issue, especially in cities, where transport is responsible for a large part of greenhouse gas emissions. This is why the decarbonisation of transport is one of the main strategies to reduce emissions and combat climate change. Sustainable mobility can help achieve this goal, among others, by reducing dependence on fossil fuels and promoting the use of cleaner and more efficient means of transport.

But in addition to the overall impact in terms of CO2, implementing sustainable mobility measures and policies can also have other direct benefits for citizens, such as improving air quality or reducing noise pollution. Moreover, the impact on people’s quality of life by reducing traffic and improving road safety is also positive.

Sustainable mobility includes a wide variety of actions and strategies, to be developed by both public entities and private companies or initiatives, that seek to reduce greenhouse gas emissions and improve the quality of life in cities and their environments. Some of them could be the promotion of public transport, which is an efficient and sustainable way to move around cities, cycling and walking, which are not only sustainable but also healthy, as well as the implementation of policies that encourage the use of electric vehicles and the necessary infrastructure for their charging and maintenance. Electric vehicles are a cleaner and more sustainable alternative to internal combustion engine vehicles that directly impact air quality in cities. In addition to these, the development of vehicles using other types of fuels, such as hydrogen, is also an avenue of work. The involvement of companies through the generation of their own sustainable mobility plans for staff is also essential to maximise the overall impact. We must not forget that when we talk about mobility, we are talking about people as well as goods. In terms of logistics, it is also necessary to implement measures that make transport sustainable at different stages of the supply chain. In medium-sized and large cities, it is also necessary to take into account the traffic management policies employed at the global and zone level, as these can help to reduce congestion and improve transport efficiency in the city.

In the case of MOBILITIES FOR EU, the focus is on both passenger mobility and freight transport, and its aim will be to demonstrate that different innovative concepts in the field of mobility designed and implemented in an appropriate way and following participatory principles and focusing on users and their needs can help to achieve the desired goal of climate neutrality, and to do so not only with economic viability but also with profitability.

Madrid and Dresden, acting as lead cities of the project, will implement 11 pilots covering 23 highly innovative demonstration interventions for mobility of people and goods, exploiting the combined potential of electrification, automation and connectivity. These include, among others, interventions with autonomous electric vehicles, innovative charging infrastructures, green fuels, electric buses and H2 vehicles, and advanced connectivity infrastructures, 5G and 6G, for connected and autonomous driving. In both cities, they also aim to build on multiple existing citizen cooperation and social empowerment initiatives by integrating them into what we call “Urban Transport Labs” (UT-Labs), conceived as innovation hubs that will aim to foster faster replication at European level. The five replicator cities, Ioaninna (Greece), Trenčin (Slovakia), Espoo (Finland), Gdansk (Poland) and Sarajevo (Bosnia) will be the first to follow the path set by Madrid and Dresden, first as direct participants in the processes of these two leading cities, and in parallel through their own UT-Labs, and later as main protagonists of their own designs. With the same idea of generating impact beyond the framework and the cities participating in the project itself, the aim is to establish collaborative relationships with the Cities Mission Platform to promote the exchange of knowledge and experiences, as well as with the main EU initiatives in this area such as 2Zero and CCAM.

On 30, 31 January and 1 February, all the project partners will meet in Madrid to jointly kick off this challenging project with which we aspire to improve the environment and the lives of citizens. The MOBILITIES FOR EU social networks will soon be launched as the first means of communication and information through which we will share our progress. Stay tuned!

Leave no one behind

Leave no one behind

Africa, a diverse and vibrant continent, is in the midst of a unique energy transformation. International organizations such as the United Nations are promoting this energy transition under the philosophy of being just, equitable and “leave no one behind”1. In this blog, we are going to explore the challenges facing this transition, the key factors driving it and how the ONEPlanET project, funded through the Horizon Europe Programme, is supporting this process:

  1. Growing energy demand: Africa’s population is among the youngest and fastest growing in the world, with a clear tendency to concentrate in cities.

“The energy transition in Africa involves not only decarbonizing, but also guaranteeing universal access”

  1. Limited access to affordable and sustainable energy and lack of clean cooking fuels: inadequate electrification hampers economic and social development in various regions.
  1. Climate Change, with devastating impacts on agriculture or water resources. In addition, the increasingly harsh temperature and humidity conditions will trigger the population’s cooling needs.
  1. Historical dependence on Fossil Fuels: the volatility of oil and gas prices affects the economic stability of many African countries, underlining the need to diversify the energy matrix.

To address these demographic, environmental and socio-economic challenges, Africa will need to double its energy supply by 2040 while ensuring access to electricity for 600 million people and clean cooking fuels for 970 million.2

  1. Natural resources and renewable potential: despite the enormous potential, to date, only 22% of the total installed energy capacity is based on renewable sources, mainly hydroelectric energy, followed by solar, wind and geothermal.3.

“The energy transition in Africa must consider equity, inclusion and affordability”

  1. Technological Innovation: technological advancement facilitates the implementation of decentralized energy solutions, such as solar microgrids or energy storage systems, overcoming traditional infrastructure barriers in remote populations, and generating new sources of employment.
  1. International Commitments: Growing global awareness of the need to address this transition has led to international agreements supporting clean energy investment in Africa

Renewable Energy potential in Africa is 1,000 times larger than the projected demand by20403 , so the low-carbon pathway is not simply about replacing polluting sources and covering the growing energy demand, but about preventing scenarios where this energy transition triggers conflicts in the use of resources (e.g. hydropower on water use or photovoltaic energy on land use) and seeking for appropriate trade-offs.

Linkages between key sectors such as water, energy and food require an “integrated Nexus approach”, which guarantees water and food security, sustainable agriculture and energy production. This Nexus approach is the cornerstone on which the ONEPlanET project, is based, in which CARTIF participates along with 11 other entities from Europe and Africa. The project aims at empowering African policymakers, research & academia, investors and citizens with the necessary tools and know-how to increase clean energy generation and sustainable use of resources while reducing inequalities and cultural/socio-economic gaps. Within ONEPlanET, “Water-Energy-Food” (WEF) Nexus models are being developed to support the definition of new policies and planning resilient energy infrastructures..

On November 9, 2023, CARTIF research team participated in the organization of a workshop for the co-creation of these WEF Nexus models in Nairobi (Kenya), attended by actors from the public and private sectors. Their feedback has been key when designing the WEF Nexus models and the subsequent simulation tool. You can click here to watch the video of the workshop.

Foto grupal del taller ONEPlanET desarrollado en Nairobi (Kenia)
ONE PLanET Workshop, Nairobi (Kenia), November 9, 2023

In addition, during 2024 students from African universities will carry out research stays in European entities, among which is CARTIF. We are looking forward to welcoming these researchers to our facilities!

In conclusion, the energy transition in Africa does not just imply a change in the way energy is generated, but an opportunity to drive sustainable development and improve the quality of life for millions of Africans. ONEPlanET will contribute to overcoming challenges through the comprehensive WEF Nexus approach, always with the fundamental premise that no individual or community is left behind.

Learn more details about the project through this video and stay informed of the progress on the ONEPlanET website, as well as its social networks: X, LinkedIn, or Instagram.


1 https://www.undp.org/africa/ticad/stories/just-energy-transitions-development-priority-africa

2 Africa Energy Outlook 2029. https://iea.blob.core.windows.net/assets/2f7b6170-d616-4dd7-a7ca-a65a3a332fc1/Africa_Energy_Outlook_2019.pdf

3 The Renewable energy transition in Africa. 2021. IRENA

Uncertainties in electricity supply

Uncertainties in electricity supply

These days we are seeing news in the media1 about the possibility of blackouts in the coming years. This news has its roots in a report published by Red Eléctrica de España entitled “National Resource Adequancy Assessment2 .

It summarises the conclusions of the latest analysis of the system´s ability to safely meet demand. The indicator used to make these estimates is the loss of load expectation (LOLE) indicator. This index measures the number of hours during which, in a given geographical area and in a given period of time, energy production will not be sufficient to meet demand. A LOLE of 0.94 hours/year, is considered acceptable,which means that 99.99% of the time production has to meet demand. However the Red Eléctrica de España report estimates that the LOLE could be 5.63 hours/year in 2024, 6.26 hours/year in 2025 and as high as 7.14 hours/year in 2027 if the planned energy storage is not implemented. In terms of energy deficit, these LOLE translate into 9.38 GWh/year in 2024, 12.9 GWh/year in 2025 and 15.68GWh/year in 2027. The cause of this energy deficit in the Spanish electric system would be the possible dismantling of a certain volume of combined cycle plants that would no longer be profitable due to competition from renewable generation. It would be interesting to know whether the LOLE could be even more adversely affected by the expected closure of Spanish nuclear power plants.

I would like to reflect here on the possible mitigating effect that demand flexibility management could have. As is well known, demand flexibility is the ability of consumers to change their consumption profile in response to a request to do so. Ideally this would be done in exchange for some form of compensation, ideally financial. In a study3 we published a couple of years ago, we concluded that Spanish domestic demand could, thanks to its flexibility, be reduced by up to 2 GWh in winter and more than 10 GWh in the summer months. It is true that these figures would be given in an ideal situation and that they depend on the area of Spain we are looking at. A similar study4 provides more conservative estimates, but these can be as high as 3 GWh depending on various factors. In both studies, flexibility is provided by domestic electrical loads such as heat pumps, air conditioners or electric water heaters. Therefore, flexible energy depends on weather conditions and, of course, on the number of consumers who would like to participate in a demand flexibility management scheme. But above all, it will depend on whether regulation and business models evolve to make it a reality for households and small and medium-sized businesses to be able to offer their flexibility through a mechanism that remunerates them in a way that is not only cost-effective but also profitable. Ways to achieve this goal have been proposed, as in the case of the Entra partnership roadmap5, but Spain is still lagging behind other EU countries on this issue.

For large consumers, there are ways to sell their demand flexibility. In October 2022, the first auction of the new Active Demand Response Service (ADRS) was held, in which 699 MW were offered and 497 MW were allocated at a price of 69.97 €/MW. A new auction is planned for 2023, after the National Commission for Markets and Competition has revised the corresponding regulatory framework6. In addition to this, demand can participate in balancing markets, but the requirement to make minimum bids of 1 MW makes it impossible for non-big consumers to participate. Energy communities or aggregations of consumers are therefore practically excluded from this possibility.

Demand flexibility roadmap..
Source: http://entra-coalicion.com/ya-disponible-la-hoja-de-ruta-para-la-flexibilidad-de-la-demanda

A demand flexibility service that is taking shape is peak shaving. This service, still under study, will reduce peak demand and is designed to facilitate the integration of renewable energies. The service is presented as something that will contribute to energy savings. How much energy can be saved is, for the moment, a mystery. In conclusion, we could say that demand flexibility could mobilise significant amounts of energy, but it does not seem easy to cover the energy deficit that has been predicted in the National Analysis of Coverage of the Peninsular Electricity System, although it could help to alleviate it. To remedy it would require a vigorous regulatory, technological, commercial and social effort to convince as many consumers as possible of the benefits of demand response. This does not appear to be easy to achieve.


1 https://www.eleconomista.es/energia/noticias/12567388/12/23/espana-tendra-riesgo-de-apagones-hasta-2030.html#1648118541665_forum

2 https://www.ree.es/sites/default/files/01_ACTIVIDADES/Documentos/informe_os_nov23.pdf

3 https://www.mdpi.com/1996-1073/14/6/1711

4 https://www.sciencedirect.com/science/article/pii/S0301421521001518

5 http://entra-coalicion.com/ya-disponible-la-hoja-de-ruta-para-la-flexibilidad-de-la-demanda

6 https://www.cnmc.es/prensa/marco-regulatorio-srad-20231024

Being active citizens in the energy transition: a collective responsibility

Being active citizens in the energy transition: a collective responsibility

In recent decades, the evolution towards a genuine energy and environmental transition has taken a fascinating course. Our social and productive system is undergoing an unprecedented transformation, and the major issues that characterise the 21st century, such as energy, digital security and socio-economic issues, among others, cannot be addressed separately. This is precisely why the digital transformation today offers new ideas and opportunities also in the purely energy field. The power of data is now obvious to scientists, engineers and economists, but it can be beyond the reach of ordinary citizens, who often lack the means to understand how much this tool can help them in their daily lives. A concrete example is how, using data collected by smart meters installed in our own homes, we can actively monitor and modify consumption profiles, whether for electricity, water or gas, to the benefit of the environment and of our wallet.

Previously, the energy market was centralised and mainly driven by a few large suppliers. However, it is now undergoing a decentralisation and orientation more in line with the real needs of individual consumers. The individual, once a mere passive recipient of energy services at home, can now aspire to be actively involved in the various stages of the production process thanks to the integration of renewable technologies into local grids and the development of Renewable Energy Communities (REC). This change in the traditional perspective of our energy market is already underway.

In this context, the energy prosumer is the key figure in each REC, combining the more traditional producer and consumer. The prosumer can cover their energy demand as independently as possible from the grid, taking advantage of their self-consumption and storing or selling the surplus to the grid. In a renewable energy community, this surplus production can be used to meet the energy demands of other members. All this implies the need for the prosumer to be aware of the production process in which he/she is involved and the functioning of the energy market.

Being active citizens and possibly involved in renewable energy communities has significant implications from a social perspective. Strata of the population with limited accees to energy supplies, either due to financial means or difficult access to the grid for geographical reasons, could benefit most substantially from local production and the formation of energy communities. The active participation of individual citizens in decision-making processes generates notable benefits, among which are, without a doubt, greater acceptance of renewable energies, as well as a greater social cohesion in the community, which by its very nature is democratic and equitable, overcoming disparities associated with gender, age or individual economic capacity. On the other hand, from an economic point of view, it is crucial to highlight that self-consumption of energy leads to significant savings in energy bills, due to a lower purchase of electricity from the grid. Furthermore, the formation of energy communities can mobilise capital at the local level and attract investment.

Within the framework of Horizon Europe, the European Union(EU) research and innovation (R&I) programme for the period 2021-2027, CARTIF is involved in the ENPOWER project. We want to contribute to the energy activation process of European citizens and to the development of renewable prosumer communities through innovative data-driven strategies. On the one hand, it is crucial to identify the impacts of the project considering parameters covering both social and environmental factors. On the other hand, we seek to assess the level of commitment of engaged European citizens, with the explicit aim of fostering the cohesion of individuals towards energy independence.

Sustainable Mobility Plans, a key element for the decarbonisation of our cities

Sustainable Mobility Plans, a key element for the decarbonisation of our cities

When we think of decarbonisation, the type of activity that comes to mind first and foremost is the implementation of large wind farms or solar farms that generate large amounts of clean energy. Or the much-needed refurbishment of buildings, which would drastically reduce overall energy demand due to our energy deficient building stock. However, in urban environments, another of the main sectors that generates emissions and where action can also be taken is mobility. Although depending on the source and the way emissions are accounted for the value may differ, it is estimated that between 25% and 35% of CO2 emissions in a city are due to mobility-related aspects.

The city where most of us who work at CARTIF technology centre live, Valladolid, is one of the cities participating in the European Mission on Climate Neutral and Smart Cities (Mission of Cities) promoted by the European Comission. Valladolid is one of the 112 cities from all over Europe and several associated states that were selected by the European Commission. In Spain, it is joined by Madrid, Barcelona, Valencia, Seville, Zaragoza and Vitoria. In accordance with the objectives of the cities mission, these 112 cities have voluntarily committed to becoming climate neutral by 2030. This is 20 ahead of the climate neutrality target set globally for the entire European continent in 2050. This requires encouraging the implementation of sustainable solutions and advanced technologies, also in areas such as sustainable mobility.

However, cities cannot walk this path of decarbonisation alone. This is why they are seeking the complicity not only of citizens to act individually, but also of companies to implement actions that will have a greater impact. At this point it is necessary to remember that climate neutrality is achieved by combining two type of actions: those that directly reduce emissions and those that capture those emissions and either regenerate the oxygen we need to live or use the CO2 as raw material in production processes. Both types of actions are necessary. It is their optimal combination that will achieve neutrality.

In this blog, CARTIF proposes a concrete action that contributes significantly to achieving these ambitious decarbonisation objectives. This action is the implementation and deployment of sustainable mobily plans for companies (PMS). These plans, complementary to the city´s own sustainable mobility plans, seek to reduce greenhouse gas emissions produced by a company´s means of transport, which are one of the main sources of pollution in cities, especially in emission areas 1 and 2. These emission areas consist of the direct and indirect emissions of companies produced, in this case, by the transport of employees, materials and products and by the type of fuel used in each case.

Companies, through the deployment of sustainable mobility plans that promote a change in the way their employees commute, for example, can contribute to reducing the overall volume of emissions in cities. In order for these plans to be accepted and therefore fully deployed, they must not only be agreed upon, but also co-developed between management, employees and all other necessary stakeholders. It is therefore highly advisable to develop them through co-creation strategies, which allow the effective participation of all these groups, so that they become direct participants in the change. Support (probably indirect) for the implementation of more sustainable and less polluting modes of transport, such as collective transport (ideally without emissions), cycling, walking and electric vehicles are clear measures, but other indirect strategies such as the promotion of teleworking, improved shifts, more effective routes, the promotion of shared mobility, the implementation of canteen areas or the installation of electric charging points are another series of measures that can be proposed. No journey generates fewer emissions than the unnecessary journey that is avoided.

In addition, the municipalities themselves must participate by committing to improving the necessary infrastructure to carry them out, such as connected and safe cycle lanes, improved urban transport, etc. It is also key to mention the indirect benefits that these types of activities can generate. In general, sustainable mobility plans seek to reduce mobility-related greenhouse gas emissions, but this benefit in turn will reduce energy dependence on fossil fuels, improve the global energy system and its stability, which will contribute to mitigating the effects of climate change and, more importantly, to improving air quality in cities and the health of the people who live in them.

The demographic challenge, a challenge of contrasts. The case of Spain

The demographic challenge, a challenge of contrasts. The case of Spain

You have probably heard or read in the news that many villages in the so-called “Empty Spain” are offering housing and work for those seeking new opportunities away from the big cities. Perhaps it may seem a desperate measure by these areas to cope with the the continuous loss of population they have been suffering over the last decades but, in reality, it is another measure to face the territorial challenge in which we are immersed due to the existence of two opposing processes; one of concentration of population and activities in urban areas and the other of decline or stagnation of rural areas.

For all these reasons, there is no longer any doubt that the demographic challenge must and is acquiring unprecedented notoriety in the political, economic and social agenda of our country, as the reflection of the current territorial model requires an integrating vision from the State. Even more so if it is tackled jointly with the ecological transition and the objectives established in the 2030 Agenda, the Paris Agreement on climate change or the New Urban Agenda, all managed  by the Ministry for Ecological Transition and the Demographic Challenge.

But what is the demographic challenge?

The demographic challenge is a “complex” and multifactorial idea that encompasses population dynamics, i.e. changes in the structure population (birth rate, average age, masculinity rate, etc.) as well as the settlement pattern (how population is distributed in the territory), including both depopulation and overpopulation.

Although in the case of Spain the focus (at least in the media) has been placed on the rural areas more affected by depopulation, the demographic challenge also covers urban areas, where the problem is the opposite, i.e. a large concentration of population in a small territory. Both processes, depopulation and overpopulation, have effects on the structuring of the territory, the consumption of raw materials,the employment rate or economic development, and accesibility to resources.

But let´s stop to understand why this is a challenge in our country. In Spain,83% of the population is concentrated between Madrid, the coast, and in the valleys of large rivers such as the Ebro and the Guadalquivir, as a result of a historically greater economic development, thus concentrating numerous companies from different sectors (industrial, technological, etc.)

As a consequence, the remaining  17% is concentrated in the rest of the territory, where, to highlight some figures, they are affected by negative vegetative growth (6,300 of Spain´s 8,000 municipalities, i.e. 80% are losing population). Although it is true that this process of population loss is not new, it has worsened over time.

Is easy to identify ,then, that these territories stand out for their very low population density values; almost half of Spain´s municipalities have a population density of less than 12.5 inhabitants/km2, the threshold that the European Union classifies as “demographic risk”, and most of them have less than 8 inhabitants/km2, i.e. they are extremely depopulated. The provinces most affected include Soria, Cuenca and Teruel.

Once the demographic and territorial challenge we face in Spain has been contextualised, it is necessary to go further and identify its causes and consequences in order to tackle it more efficiently. Fortunately or unfortunately, this is a clear example of what is commonly known as “fish that bites its own tail”, i.e. a factor that motivates population displacement between territories produces effects or consequences that eventually become the cause of the same.

One of the main causes and consequences of the migration of the population residing in these areas is attributed to several factors. The first one is the predominant economic sector, as technological progress in predominantly agricultural areas has led to a higher level of automation, with a consequent reduction in the  labour force, and therefore in the labour supply. Secondly, and closely relately to the first, is the lack of job diversity, and last but not least, the lack of services (housing, education, leisure, transport, etc.) that meet the needs of a 21st century society.

All of the above is aggravated by the declining birth rate, which, although it is a nationwide problem, is more acute in regions with smaller populations.

A direct consequence of population decline is a reduction in demand for public services, such as education, health care, transport and social security. This, in many cases, leads to cuts in the budget allocated to their management, as they become less economically sustainable. As a result, the supply of essential services may be compromised, particularly affecting the most vulnerable groups in society.

Fortunately, we are not alone, and the demographic challenge is not only a problem in Spain, which is why the European Union, aware of this problem, has carried out a zoning of European regions in order to apply more specific and effective policies and measures in each area, taking into account the level of economic development, population density, availability of natural resources, and geographical location, among other aspects.

Also at European level we find the Southern European Sparsely Populated Areas Network (SSPA Network). This agency focuses on the economic sector and aims to promote, together with the agents of the territory, specific policies and measures that contribute to tackling the main structural challenges affecting the least populated rural regions of Europe. The provinces of Soria, Teruel and Cuenca are part of this network, territories that according to European Union criteria are at high risk of depopulation, so it is important to try to stop and reverse their situation as a matter of urgency.

With regard to the policies developed in Spain in relation to the demographic challenge, there have been numerous and all of them focused on alleviating the effects of depopulation, all of them with the aim of tackling Article 174 of the Treaty on the Functioning of the European Union (TFEU), which seeks to reduce the differences in development between the different regions.

Among the most noteworthy policies, and in which citizen participation has been promoted, are the General Guidelines of the National Strategy against the Demographic Challenge, the package of 130 Measures to face the Demographic Challenge, as well as the Strategy for the development of areas with depopulation and socio-economic decline in Castilla la Mancha or the Special Directive for Demographic Policy and against Depopulation in Aragon.

Source: sspa-network.eu

Broadly speaking, the measures or strategies included in these policies are the creation of employment, the improvement of infrastructures and services, and support for entrepreneurs and small businesses. In addition, better access to housing and essential services, such as education and health.

Despite the fact that depopulation is a serious problem, there are several regions that are making an effort to curb it and even gain population, such as the Scottish Highlands or Artieda (Zaragoza).

Thanks to the creation, more than 60 years ago, of an economic and community development agency, with autonomy of action and depoliticised, they have managed to reverse the trend in the Highlands of Scotland, with the population expected to increase by 10% by 2035 compared to 2010. This is due to providing infrastructure and housing, as well as trying to improve the availability of basic services, commerce, culture, leisure and connectivity.

Another success story, but on a national level, can be found in Artieda, which started with 67 inhabitants in 2017, and thanks to the promotion of housing policies, employment, improved leisure and internet access, has managed to increase its population to 82 inhabitants in 2022, with 15 young people having settled in the municipality. In order for the initiatives and projects being carried out in this region to have had an effect, citizen participation and the ideas contributed by the population have been key.

At CARTIF we are aware of the challenge, not only because of our location in a region suffering from depopulation, but also as an active part in tackling it. In particular in the SPANDAM project, in which we work on the development of integrated evaluation tools and models that allow us to quantify the impact of policies that seek the fixation of population through actions in search of local development and the promotion of its attractiveness.