Los investigadores cada vez nos enfrentamos más ante situaciones de «digitalizar» algo no digitalizado anteriormente, temperaturas, presiones, consumos energéticos, etc… para estos casos buscamos un sistema de medida o un sensor en un catálogo comercial: una sonda de temperatura, un presostato, una pinza amperimétrica para medir una corriente eléctrica,etc.

En ocasiones, nos vemos en la necesidad de medir «algo» para lo que no se encuentran sensores comerciales. Esto puede ser debido a que no son métricas habituales y no hay suficiente mercado para ese tipo de sensores o directamente, no existen soluciones técnicas comerciales disponibles por diferentes razones. Por ejemplo, puede ser necesario medir características como la humedad de corrientes de materias sólidas, o características únicamente medibles en un laboratorio de control de calidad de forma indirecta y que necesitan un tiempo elevado de experimentación.

También, en ocasiones, se requiere medir características en ambientes de gran dureza por altas temperaturas, como pueden ser los hornos de fundición, o ambientes con mucho polvo que saturan cualquier sistema convencional de medida y en algunas ocasiones puede ser necesario evaluar una cualidad que no se distribuye de forma uniforme (p.ej. cantidad de grasa en una pieza de carne, presencia de impurezas). Otro factor a tener en cuenta, no siempre es posible instalar un sensor sin interferir en el propio proceso de fabricación del material que deseamos medir, o la única forma es tomar una muestra para realizar su análisis fuera de línea y obtener un valor o característica un tiempo después, pero nunca en tiempo real.

En estas situaciones, se necesita recurrir a soluciones a medida que denominamos sensores inteligentes o sensores cognitivos. Además de llamarles así para que parezcan algo exótico o cool, son soluciones que necesitan usar una serie de sensores «convencionales» junto con programas y algoritmos, por ejemplo, de inteligencia artificial, que procesen las medidas devueltas por estos sensores comerciales para tratar de dar una estimación lo más precisa posible de la cualidad que deseamos medir.

Actualmente nos encontramos desarrollando este tipo de sensores inteligentes para diferentes industrias de proceso como la fabricación de asfalto, barras de acero o medicamentos (p.ej. píldoras) en el marco del proyecto europeo CAPRI.

Por ejemplo, en la fabricación de asfalto es necesario secar arenas de diferentes tamaños antes de mezclarse con el betún. Durante el proceso de secado en continuo de estas arenas, el tamaño más fino de arena, denominado filler, se «desprende» en forma de polvo de árido de tamaño más grande y es necesario aspirar este polvo de forma industrial usando lo que se denomina filtro de mangas. Hoy en día, el secado y la aspiración de filler se realiza de forma que se asegura que todo el filler es extraído. El inconveniente de este proceso, es que, en realidad es necesario añadir filler adicional al mezclar las arenas secadas con el betún, pues es necesario en la mezcla, porque el filler mejora la cohesión de la mezcla rellenando huecos entre los granos de arena. Todo este secado y aspiración completo del filler supone un gasto energético que para tratar de minimizar sería necesario poseer una medida del mismo presente en la mezcla de arenas. Actualmente, esta medida se obtiene de forma puntual a través de un análisis granulométrico en laboratorio con una muestra de material antes de secar.

Dentro del proyecto CAPRI estamos trabajando en la compleja tarea de poder medir el flujo de filler aspirado durante el secado. No se encuentran en el mercado sensores garantizados para medir una gran concentración de polvo (200.000 mg/m3) en suspensión a temperatura elevada (150-200ºC).

En el marco del proyecto se ha desarrollado una solución para este problema cuyos resultados de laboratorio podéis consultar en el artículo de investigación recientemente publicado en la revista científica Sensors («Sensor inteligente basado en la vibración para medir el polvo en grandes caudales»).

Llevar a cabo el desarrollo de este tipo de sensores requiere realizar diferentes pruebas en laboratorio, bajo condiciones controladas que permitan verificar la factibilidad de dicha solución y posteriormente, también en condiciones de laboratorio, realizar unos ensayos calibrados que permitan asegurar que es posible estimar el flujo verdadero de filler aspirado en el proceso de secado de las arenas. El proyecto CAPRI ha completado con éxito las pruebas de este sensor y de otro pertenecientes a la fabricación de barras de acero y píldoras farmacéuticas.

El proyecto en su compromiso con la iniciativa de ciencia abierta impulsada por la Comisión Europea, ha publicado en su canal de Zenodo, diferentes resultados de estas pruebas de laboratorio que nos permiten corroborar el éxito preliminar de dichos sensores a falta de su validación y prueba en las zonas productivas de los socios colaboradores del proyecto. En un futuro próximo estaremos en condiciones de compartir los resultados del funcionamiento industrial de este y otros sensores desarrollados del proyecto.


Co-Autora

Cristina Vega Martínez. Ingeniera Industrial. Coordinadora del proyecto CAPRI H2020

Aníbal Reñones Domínguez
Share This