En este post me gustaría retomar el tema de las carreteras con suelo radiante, con el fin de profundizar un poco más en el beneficio que puede tener calentar los puntos más críticos de la carretera.
Como ya indiqué, la solución actual para evitar y eliminar la formación de hielo en las carreteras es la aplicación de fundentes, lo que todos conocemos como “sal de carretera”. En mayor o menor medida, esta sustancia es cloruro de sodio, un producto barato y efectivo. Me gustaría pararme aquí para que hagamos una pequeña reflexión, ¿realmente somos conscientes del daño que estamos haciendo empleando estas sustancias? Seguramente no; de ahí que la mayor parte de la gente se alegre cuando ve echar la sal.
Anualmente se esparcen millones de toneladas por nuestras carreteras, a menudo, sin una distribución apropiada a la calzada y con una frecuencia excesiva. Por esta razón me gustaría destacar alguna de sus nefastas consecuencias:
La vegetación próxima a la calzada es la primera en sufrir los efectos negativos de estas sustancias. Por un lado, las altas concentraciones de cloruro lo convierten en un elemento tóxico, causando el dorado o quema de las hojas y, por otro, las altas concentraciones de sodio pueden afectar al crecimiento de las plantas al alterar la estructura del suelo, la permeabilidad y la aireación.
Una proporción importante de la sal es arrastrada por el agua de lluvia llegando a acuíferos, embalses, ríos, humedales, etc. Esto provoca un aumento drástico del riesgo de contaminación de delicados ecosistemas e incluso en muchos casos, del agua que bebemos.
La sal afecta en gran medida a la salud de la fauna silvestre desde dos puntos de vista: por las graves consecuencias de su consumo dada su toxicidad, en especial las aves, y por la frecuencia de atropellos, dado que la sal atrae a los animales para su ingestión.
Otro punto que apenas tenemos en cuenta es el suelo, a pesar de que su degradación es un problema grave para Europa. La sal reduce la estabilidad del suelo, modifica su conductividad eléctrica, disminuye su pH y en general, perjudica seriamente su fertilidad.
Como podemos ver, el impacto medioambiental de estas sustancias es muy grande, por lo tanto, deberíamos tratar de hacer un esfuerzo para minimizar su efecto, utilizando toda la tecnología que esté a nuestro alcance para conseguir un mantenimiento invernal menos agresivo.
Una solución parcial sería poder medir en tiempo real la cantidad de fundentes en cada punto de la carretera, no solo en un punto fijo. Esto solo se conseguiría embarcando los sensores en los vehículos de intervención y mantenimiento. En la actualidad existen algunos sistemas en fase de desarrollo que miden la salpicadura de la rueda, midiendo el índice de refracción del agua (Japan Highway Public Corporation) o la conductividad eléctrica (Universidad de Connecticut). Dados sus resultados, en ningún caso han sido incorporados al mercado.
En CARTIF, con la colaboración de la empresa Collosa, estamos investigando el desarrollo de este producto. Nuestros principales objetivos son evitar esparcir más sal cuando las cantidades actuales son suficientes, echar solo la cantidad necesaria en el lugar preciso que lo necesite (dado el sistema de posicionamiento global de estos dispositivos) y dotar al responsable del mantenimiento invernal de una herramienta objetiva sobre la que basar sus decisiones de intervención.
En CARTIF apostamos por una solución definitiva que evite, en lo posible, dispersar los fundentes. Si conseguimos atacar a tiempo el problema en los puntos más peligrosos, previniendo y evitando la formación de hielo, evitaremos la salida del camión para cubrir de fundentes dichos puntos. Además, esta salida no solo cubrirá los puntos peligrosos, sino que, ya que sale, esparcirá los fundentes por toda la carretera.
Esta solución es el desarrollo de un suelo radiantemás económico con mayor eficiencia energética, basado en energía geotérmica. Para ello es fundamental el desarrollo de una predicción inteligente que evite la formación del hielo y se base en el empleo de nuevas mezclas bituminosas.
Sin lugar a dudas, esto supondrá una reducción importante del impacto medioambiental que supone la vialidad invernal de nuestras carreteras y en particular, en los puntos más delicados de nuestra geografía como los parques naturales.
Permíteme recordarte que Europa es el continente que cuenta con el más diverso, rico y numeroso patrimonio cultural de todo el mundo. 609 millones de turistas visitaron en 2015 el “viejo continente” (29 millones más que en 2014) según la Organización Mundial del Turismo, y, aunque resulte un tanto pretencioso, se sugiere que el 37% de esos turistas son turistas culturales, cifra que crece un 15% cada año. Esta “curiosa especie” que deambula por las ciudades tiene la imperiosa necesidad de visitar el patrimonio cultural construido del lugar y participar en eventos culturales.
Estoy de acuerdo con que hablar de los inmuebles históricos como recursos turísticos tiene un punto “mezquino” al considerarse el Patrimonio como elemento integrador e identificador social totalmente intangible, pero igual de cierto es que es un recurso económico y sólo haciendo caja se asegura su sostenibilidad. De esta manera se fijan y crean miles de empleos, que a su vez refuerzan ese carácter de vertebrador social que tiene y que incluso permite mejorar la calidad de vida de los ciudadanos.
Precisamente por esto el sector público viene dando un empujón a la creación de más y más atracciones culturales con el patrimonio construido como escenario. El turismo cultural se percibe como la principal fuente de financiación para la preservación de los inmuebles, al generar los turistas los recursos necesarios para su mantenimiento y restauración. Veremos si esto es realmente así en los próximos años, porque según el informe Richards, ahora mismo existe una oferta muy superior a la demanda.
Asegurar la protección y la preservación de nuestro patrimonio cultural construido es, hoy por hoy, más urgente que nunca. No ya sólo como “presa” del turismo cultural, y no ya sólo también como marca de territorio (incluyendo al ciudadano), sino por su vulnerabilidad a la contaminación, el cambio climático y las presiones socioeconómicas. Todos estamos malos de vez en cuando y sabemos que, aunque no lo hagamos, siempre es mejor prevenir que curar. Pues lo mismo le ocurre al patrimonio cultural construido: es tan deseable como importante disponer de sistemas automáticos que continuamente nos indiquen cómo se encuentran los inmuebles culturales, previniendo males antes de que estos sean tan costosos como irreparables. Como cuando un médico nos ausculta. Ahora bien, ¿qué necesitamos auscultar? En el argot técnico decimos “monitorizar”, y para ello se utilizan sensores de muchos tipos, pero principalmente registran tres aspectos:
La temperatura y la humedad relativa. Ambas siempre están ligadas (de hecho la segunda es inversa de la primera). Cualquier bien cultural tiene una cantidad mayor o menor de vapor de agua a una temperatura determinada, lo que influye decisivamente en la estabilidad físico-química de los materiales de que están hechos. Inadecuadas condiciones de temperatura y humedad producen deformación y rotura; oxidación y corrosión; así como biodeterioro (aparición de microorganismos).
Luz natural y artificial. La iluminación puede ser de origen natural (el sol), o artificial (fuentes eléctricas), pero independientemente de su origen es una radiación electromagnética que cubre fundamentalmente los rangos ultravioleta (UV), visible (VIS) e infrarrojo (IR). En conjunto provocan fotodegradación (decoloración) y aumento de temperatura, sobre todo en materiales orgánicos (pinturas, textiles, libros y documentos).
Contaminantes. La composición y calidad del aire se ven alterados por compuestos que provienen en su mayoría de la utilización de combustibles fósiles (tráfico rodado, calefacciones de los edificios y actividades industriales). Estos compuestos pueden desencadenar reacciones químicas que afectan a los materiales provocando corrosión; manchas y costras; y también biodeterioro.
Iremos desglosando particularmente estos parámetros en posts sucesivos.
En cualquier caso el papel de centros tecnológicos como CARTIF es decisivo para dar un pasito más en los desarrollos técnicos necesarios para hacer que la monitorización pueda hacerse a coste admisible y de forma totalmente compatible con la estética y la funcionalidad del lugar. Proyectos de referencia internacional en este sentido en que CARTIF está jugando un importante papel son:
Tras Italia y China, España es el país del mundo que atesora el mayor número de bienes patrimonio de la humanidad. Además, somos un destino turístico mundial de primer orden, con una componente cultural en alza. Jugando en casa, Castilla y León acapara el 60% del patrimonio español… ¿Nos ponemos las pilas?
¿Para qué sirve la digitalización 3D en infraestructuras? Para inspeccionar revestimientos, detectar grietas, inventariar y sensorizar túneles y otro tipo de estructuras. En este vídeo te contamos lo que hacemos en CARTIF:
David Olmedo y José Llamas, investigadores de CARTIF.
Con los sistemas de posicionamiento global ha ocurrido un fenómeno similar a lo que ha pasado con los teléfonos móviles: en unos años hemos pasado de no que no existieran a considerarlos imprescindibles. Lo cierto es que, de hecho, la geolocalización es una de esas tecnologías que ha propiciado el desarrollo de multitud de aplicaciones y en muchos ámbitos ya no se concibe poder trabajar sin el uso del comúnmente llamado GPS.
Este tipo de sistemas de posicionamiento se basa en recibir la señal de tres o más satélites por medio de la trilateración inversa: determinando la distancia a cada uno de los satélites se obtiene la posición en coordenadas absolutas (normalmente WGS84).
Los sistemas de posicionamiento global basados en satélites tienen su origen en los años 60, en el sistema norteamericano TRANSIT. Con este sistema se podía conseguir fijar la posición una vez cada hora (en el mejor de los casos) con una precisión de unos 400 metros. A este sistema le siguió el Timation y en el año 1973 comenzó el proyecto Navstar (ambos norteamericanos). El primer satélite de este proyecto se lanzó en febrero de 1978 hasta completar la constelación actual, a la que se declaró con plena capacidad operacional en abril de 1995. Este sistema Navstar-GPS es el origen del nombre genérico GPS que solemos aplicar a todos los sistemas de navegación global. En 1982 la antigua Unión Soviética lanzó los primeros satélites de un sistema similar llamado GLONASS que comenzó a estar operativo en 1996. Por su parte, la República Popular China lanzó en el año 2000 el primer satélite de su sistema de navegación BeiDou, que está previsto que esté plenamente operativo en el 2020. Por último, en 2003, comenzó el desarrollo del sistema de posicionamiento de la Unión Europea denominado Galileo, con un primer lanzamiento en el 2011. Actualmente cuenta con 12 satélites en activo (y 2 en pruebas) y está previsto el lanzamiento simultáneo de otros cuatro el próximo 17 de noviembre. De esta forma, habría 18 satélites en órbita y el servicio inicial del sistema de posicionamiento Galileo podría comenzar a finales de 2016. Se espera que esté totalmente operativo en el año 2020. Hay que decir que también existen otros sistemas, a nivel regional, complementarios a los ya comentados, en India y Japón.
Como se puede comprobar, los sistemas de posicionamiento global están plenamente extendidos y son ampliamente utilizados tanto a nivel militar y comercial (transporte de personas y mercancías, agricultura de precisión, topografía, estudios del medio ambiente, operaciones de rescate…) como a nivel personal (casi todo el mundo tiene un móvil con GPS disponible, aunque otra cosa es que siempre se les acabe la batería en el momento más inoportuno).
Respecto a la precisión obtenida con los equipos de geolocalización actuales, es del orden de unos pocos metros (e incluso algo mejor con el sistema Galileo) y se puede llegar a precisión centimétrica usando dispositivos multifrecuencia y aplicando correcciones diferenciales.
Uno de los problemas de estos sistemas es que no funcionan correctamente en interiores ya que la señal de los satélites no se puede recibir bien dentro de los edificios (aunque ya existen equipos de alta sensibilidad que reducen este problema y otros dispositivos llamados pseudolites, que actúan simulando la señal GPS en interiores). Y como ya no nos basta con conocer nuestra posición exacta en exteriores, ahora surge la necesidad de conocer el posicionamiento también en los interiores de grandes edificios e infraestructuras (aeropuertos, edificios administrativos, centros comerciales…).
Por tanto, han aparecido sistemas de posicionamiento en interiores (IPS) que permiten la localización dentro de espacios cerrados. A diferencia de los sistemas de posicionamiento globales, en este caso existen muchas tecnologías diferentes que además no suelen ser compatibles entre sí, lo que dificulta su difusión y adopción por parte del público general. Ya existen soluciones muy fiables y precisas en entornos empresariales, pero estos desarrollos son específicos y difícilmente trasladables a un uso genérico de localización de personas en interiores. En este tipo de contexto profesional, CARTIF ha realizado varios proyectos de posicionamiento en interiores para movimiento autónomo de mercancías y robótica de servicios. No existe en la actualidad un sistema estándar de posicionamiento en interiores pero hay muchas tecnologías compitiendo por un lugar predominante.
Las tecnologías utilizadas se pueden diferenciar en la necesidad o no de una infraestructura de comunicaciones. Aquellas que no necesitan de infraestructura existente se suelen basar en el uso de sensores habitualmente disponibles en un teléfono móvil inteligente (smartphone): variaciones del campo magnético en el interior del edificio que son detectadas por los magnetómetros, medición de los movimientos realizados en el recinto empleando los acelerómetros o identificando ciertos elementos característicos (como códigos QR) usando la cámara. En todos estos casos la precisión alcanzada no es muy alta pero podría ser de utilidad en ciertas aplicaciones sencillas como orientarse en un gran edificio.
Los sistemas de posicionamiento en interiores que usan infraestructura de comunicaciones emplean casi todas las tecnologías disponibles de este tipo para obtener la localización: WiFi, Bluetooth, RFID, infrarrojos, NFC, ZigBee, banda ultra ancha, luz visible, antenas de telefonía (2G/3G/4G), ultrasonidos…
Con estos sistemas se determina la posición, normalmente por triangulación, calculando la distancia a los dispositivos fijos de referencia (usando la intensidad de la señal recibida, señales codificadas o por medición directa de dicha distancia). Así, se puede llegar a alcanzar mayores precisiones que en los tres casos anteriores. También existen nuevos desarrollos que combinan varias de las tecnologías mencionadas para conseguir mejorar la precisión y disponibilidad del posicionamiento.
Aunque, como se ha dicho no hay un estándar, se está extendiendo el uso de nodos basados en bluetooth de bajo consumo (BLE). Ejemplos de estos sistemas son el Eddystone de Google y los iBeacons de Apple.
Lógicamente, como en el caso de posicionamiento en exteriores, además de conocer la posición hay que disponer del correspondiente mapa del entorno que permita la navegación. Existen también otros sistemas, llamados SLAM, que van generando mapas del entorno (que puede ser conocido o no) según se van moviendo, muy usados en robots y vehículos autónomos. Un ejemplo reciente es el proyecto Tango (también de Google) que permite generar modelos 3D del entorno utilizando dispositivos móviles (smartphones o tablets).
Como se ha visto, cada vez estamos más cerca de poder estar localizados en cualquier lugar, lo cual puede resultar muy útil pero también nos puede hacer excesivamente dependientes de estos sistema (cada vez se pregunta menos en la calle cómo llegar a un sitio) a la vez que se incrementan los consabidos problemas de privacidad asociados a estos temas. Así que, aunque gracias a estos avances cada vez sea menos necesario el sentido de la orientación, lo que no hay que perder nunca es el sentido común.
La Iniciativa Internacional de Compra Pública Sostenible (SPPI, Sustainable Public Procurement Iniciative) es el instrumento político fundamental a día de hoy para promover el desarrollo sostenible y avanzar hacia una economía verde que fomente el desarrollo de productos y servicios sostenibles, maximizando los beneficios sociales y medioambientales. Las Directivas de la Comisión Europea obligan a las administraciones públicas a basar sus decisiones de adjudicación en el principio de la oferta económicamente más ventajosa (MEAT), centrándose en los costes del ciclo de vida y en los productos social y medioambientalmente sostenibles. Los Estados miembros deben fomentar en general el análisis del coste de todo el ciclo de vida como una práctica habitual en las inversiones a largo plazo.
La inversión en infraestructuras de transporte tiene un impacto positivo en el crecimiento económico. Crean riqueza y puestos de trabajo, pero ha de hacerse de forma que se maximicen esos impactos positivos y se minimice el impacto negativo en el medioambiente. Concretamente, el transporte por ferrocarril supone el 0,2% de las emisiones globales en la UE27. De esas emisiones, la infraestructura supone el 28%, y la mitad se producen durante su construcción. Esto ilustra el alto impacto ambiental de estas actividades.
En el artículo del blog de IODC “Luchando contra el cambio climático: el reto de datos definitivo”, se defiende que los datos son más poderosos cuando están disponibles como datos abiertos o públicos y que los científicos no sólo utilizan los datos para monitorizar el cambio climático, sino también para ayudar a aportar soluciones, combinando la ciencia de los datos con la ciencia del clima.
En línea con estas ideas, hay una iniciativa, parcialmente financiada por el Programa LIFE+ de la Comisión Europea, que combina el análisis de ciclo de vida (ACV) con técnicas de análisis inteligente de datos, con el fin de mejorar la sostenibilidad de los procesos de construcción de infraestructuras ferroviarias, considerando aspectos ambientales, económicos y sociales. El objetivo es reducir las huellas de carbono e hídrica de los proyectos de construcción de infraestructuras ferroviarias desde las etapas iniciales, i.e. el diseño y la planificación.
En una reciente conferencia, Martina Werner, miembro del Parlamento Europeo y del Comité ITRE sobre Industria, Investigación y Energía, defendía que muchos fabricantes se limitan a competir en base al precio, mientras que un desarrollo riguroso de las directivas de compra, y particularmente del principio MEAT, puede proporcionar a los proveedores una ventaja competitiva. En la actualidad se tienen en cuenta numerosos factores durante el proceso de compra, incluyendo la fiabilidad de la cadena de suministro, los servicios, los costes de mantenimiento, factores medioambientales y criterios de responsabilidad social corporativa.
A partir del impacto medioambiental y social de las tareas más importantes, una herramienta de acceso abierto proporciona los valores de las huellas y determinados indicadores sociales y medioambientales como datos abiertos, para promover la incorporación de criterios medioambientales en los proyectos de construcción. Esta herramienta está disponible online, con toda la información relacionada con ACV y ACV Social (SLCA) y pretende difundir el desarrollo sostenible y allanar el camino para que administraciones públicas y licitadores utilicen este tipo de herramientas.
Todo el mundo sabe lo que es una cámara termográfica. Películas como “Depredador”, la retransmisión de la fórmula 1, etc. han ayudado a que la gente conozca esta tecnología. En CARTIF llevamos muchos años empleándola para la inspección de construcciones e infraestructuras.
Su funcionamiento se basa en que todo objeto con una temperatura superior al cero absoluto emite radiación infrarroja, la cual no es visible por el ojo humano. Esta radiación depende de la temperatura del objeto, por lo que conociendo dicha radiación se puede obtener la temperatura.
Una cámara termográfica registra no solo esta radiación (radiación emitida), sino también la reflejada y la transmitida por los objetos. Además, aparte de la temperatura del objeto entran en juego otros factores, por lo que la obtención de la temperatura no es inmediata.
Las cámaras termográficas traen un software que devuelve la temperatura del objeto inspeccionado de forma transparente al usuario. El problema viene cuando se confía demasiado en este software y no se sabe muy bien que se está haciendo. Un operador no experimentado puede cometer ciertos errores. La idea de este post es aclarar ciertos conceptos erróneos que tiene el público general sobre las cámaras termográficas:
1.Las cámaras termográficas son capaces de ver dentro de los objetos. FALSO. La cámara solo ve la superficie del objeto, y a partir de ahí, calcula la temperatura.
2.Cualquier tipo de material puede ser medido con cámaras termográficas. FALSO. La temperatura de un cuerpo viene dada por la radiación emitida, pero la cámara también ve la radiación reflejada y transmitida. La mayoría de los materiales son opacos a la radiación infrarroja, por lo que la componente transmitida puede ser ignorada. Pero hay materiales con baja emisividad que reflejan mucha radiación, por lo que son difíciles de medir con una cámara termográfica.
3. Las cámaras termográficas no pueden usarse de día.FALSO. Las cámaras termográficas solo son sensibles al infrarrojo (no ven la luz visible tal como lo hacemos los seres humanos). De noche es más sencillo controlar la radiación reflejada, por lo que dependiendo de lo que se quiera inspeccionar, es aconsejable hacerlo por la noche.
4. No es necesario conocer la emisividad del objeto inspeccionado. FALSO. Sin duda, este es el parámetro más importante que debe conocer la cámara para calcular correctamente la temperatura.
5.Esta tecnología es muy cara.FALSO. Hace años era así. El avance tecnológico ha supuesto que existan cámaras termográficas a precios muy competitivos. Incluso FLIR comercializa un accesorio para convertir el móvil en una cámara termográfica.
Ahora que ya sabemos más sobre las cámaras termográficas, es el momento de saber hasta qué punto son innovadoras sus aplicaciones. Estos son algunos ejemplos:
2. Detección de motores en bicicletas Este año, la UCI detectó un motor eléctrico en la bicicleta de Femke Van den Driessche durante el campeonato del mundo de ciclocross sub 23. Es el primer caso de dopaje tecnológico en la historia del ciclismo.
3. Diagnóstico de traumatología Según los resultados de un estudio recientemente publicado en el Journal of Medical Imaging and Health Informatics, las cámaras termográficas de alta resolución pueden ser buenas herramientas de apoyo para proporcionar a los médicos información adicional para identificar correctamente la presencia o no de una lesión en una determinada zona corporal.
El estudio ha sido desarrollado por un grupo de investigación de la Unidad de Termografía de la Facultad de la Actividad Física y el Deporte (INEF) de la Universidad Politécnica de Madrid (UPM) en colaboración con la clínica CEMTRO.
4. Control de plagas Es posible utilizar termografía para la detección de plagas, gracias a la correlación entre las humedades y la presencia de insectos. También se ha visto que ciertas anomalías que aparecen en las imágenes termográficas pueden deberse a ciertos insectos como las termitas.
5. Uso de la termografía para la prevención del cáncer de mama Se basa en analizar cambios de temperatura detectados con termografía que podrían ser debidos a vascularizaciones, infecciones, inflamaciones, etc. Un tumor necesita crear vasos sanguíneos para desarrollarse. Este proceso, llamado angiogénesis, produce calor y es cuando una termografía puede detectarlo, mucho antes de que se desarrolle el propio tumor.
Sin duda, la termografía es una tecnología con grandes posibilidades. En próximas entregas, os contaremos lo que hacemos con ella en algunos de nuestros proyectos.