Bajo las bóvedas de una iglesia gótica, entre los muros gruesos de un monasterio cisterciense, en las yeserías de un palacio renacentista o en las fábricas de tapial y entramado de una casa tradicional, late una misma realidad: el patrimonio construido forma parte esencial de nuestra historia y de nuestra identidad colectiva. Un legado físico hecho de piedra, madera, cal, ladrillo o tierra cruda, que fue concebido con un alógica constructiva sabia y adaptada a su tiempo.
Hoy, sin embargo, buena parte de estos edificios se deterioran, se vacían y, en demasiados casos, desaparecen sin haber tenido una segunda oportunidad. La falta de un uso actualizado, la pasividad, la ausencia de planes de mantenimiento, el coste que suponen y, sobre todo, algo de lo que se habla muy poco o se mantiene de tapadillo: la incomprensión técnica de cómo fueron construidos, están acelerando su pérdida.
Ciclo de vida del Monasterio de Nuestra Señora del Prado (Valladolid), edificio piloto del proyecto INHERIT. Elaboración propia
¿Cómo conservar lo que no se conoce? ¿Cómo mantener con criterio si ignoramos cómo se construyó, el por qué de los materiales o qué lógica estructural hay detrás? La conservación preventiva no es una moda: es una necesidad urgente si queremos preservar nuestra herencia cultural con rigor y responsabilidad.
En CARTIF consideramos esencial investigar y desarrollar soluciones técnicas, innovadoras, pero a la vez realistas y asumibles, que ayuden a afrontar este reto desde el conocimiento y el respeto por lo construido. Queremos contribuir a una conservación más inteligente y más útil que no se base en la improvisación ni en recetas estándar, sino en comprender cómo se construyen las cosas para poder cuidarlas mejor, con la convicción de que la conservación del patrimonio es un proceso colectivo: una forma de valorar lo que nos une, de implicar a la ciudadanía y de reforzar el vínculo con nuestro entorno. Proyectos en los que venimos trabajando , como INHERIT o iPhotoCult, respaldan esta visión y refuerzan la necesidad de ofrecer una nueva mirada tecnológica a la conservación del patrimonio. Ya en nuestro post «La ITV de la edificación histórica» abordamos esta perspectiva; si te interesa profundizar, te recomendamos su lectura.
¿Por qué sirven los mimos criterios que en edificios contemporáneos?
Los edificios históricos no responden a las reglas de la construcción moderna. Sus materiales: cal, ladrillo, piedra, madera, tierra…, son porosos, naturales, adaptados al clima y al contexto y sus sistemas constructivos, muros portantes, bóvedas, armaduras de cubierta, obedecen a una lógica diferente. Evaluarlos con los mismos criterios técnicos que un edificio de hormigón armado o acero no solo es incorrecto, es injusto.
Necesitamos herramientas que hablen el idioma del patrimonio construido. Una mirada específica que valore su singularidad técnica. Porque la diversidad constructiva, lejos de ser un problema, es un valor añadido.
Una propuesta técnica para conservar desde el conocimiento
Hoy en día, muchas inspecciones diagnósticas dependen casi exclusivamente de la experiencia del técnico que las realiza. Esto es valioso, imprescindible incluso, pero también insuficiente si no se estructura la información de manera homogénea, trazable y útil para procesos posteriores como la planificación del mantenimiento, la rehabilitación o al evaluación del riesgo. No se trata de imponer una única manera de inspeccionar, sino de proponer una estructura técnica común, abierta a evolución, que respete la diversidad y aumente la eficacia de las decisiones.
Flujo de trabajo hacia el mantenimiento preventivo basado en HBIM: de la toma de datos al conocimiento. Elaboración propia
Por ello, consideramos fundamental abrir el debate y avanzar hacia una propuesta metodológica que dé respuesta a las necesidades específicas de este ámbito con criterios técnicos claros y una visión sistemática que permita:
Identificar y valorar los sistemas constructivos históricos desde su propia lógica.
Detectar y estructurar los síntomas de deterioro por ámbitos técnicos (cimentación, estructura, fachada, cubierta, particiones y acabados interiores, cerrajería y carpintería, accesibilidad, e instalaciones y sistemas inteligentes).
Evaluar los riesgos asociados, tanto físicos como funcionales o ambientales.
Generar datos estructurados y reutilizables, que permitan conectar con herramientas digitales como modelos H-BIM o plataformas de mantenimiento.
Este enfoque no se basa en estandarizar por simplificar. Al contrario: propone unificar criterios técnicos de forma inteligente, consensuando entre diferentes profesionales, adaptándose a distintos contextos y tipologías, y respetando la diversidad arquitectónica y cultural del patrimonio construido, siempre alineados al marco normativo actual (como la serie UNE 41805 sobre diagnóstico de edificios) y usando como referencia las recomendaciones del Plan Nacional de Conservación Preventiva del Instituto del Patrimonio Cultural Español (IPCE).
¿Qué beneficios aporta una herramienta técnica bien diseñada?
Adoptar una metodología técnica adaptada al patrimonio ofrece beneficios concretos tanto para técnicos y empresas como para administraciones públicas:
Costes reducidos a medio y largo plazo, al evitar intervenciones de emergencia.
Transparencia y trazabilidad, con datos organizados y comparables entre edificios.
Valoración del conocimiento técnico tradicional, reconociendo la lógica y la eficacia de sistemas y materiales históricos, a la vez que se cubren nichos profesionales absolutamente necesarios, que actualmente carecen de cobertura.
Apoyo real a la toma de decisiones, sin sustituir criterios técnicos profesionales.
Conectividad con modelos digitales y modelos H-BIM, que permiten planificar el mantenimiento, evaluar los riesgos de deterioro, registrar el envejecimiento de materiales, o el comportamiento energético (cuando sea necesario).
Este tipo de herramientas son claves para conseguir una gestión más útil y proactiva, que ayude a planificar mejor, a intervenir menos, y a conservar más, permitiendo alcanzar un patrimonio sostenible, resiliente, eficiente en el uso de recursos y, en definitiva, rentable.
Mirando al futuro: digitalización con sentido
El potencial de este enfoque no termina en la inspección o el diagnóstico. Se abre un camino hacia herramientas digitales capaces de integrar modelos 3D, imágenes geolocalizadas, sensores ambientales, estructurales o de cualquier otro tipo, y monitorización de lesiones o incluso sistemas de IA que anticipen patrones de deterioro.
Flujo de trabajo aplicado a la excolegiata de Nuestra Señora de la Asunción de Roa (proyecto iPhotoCult), con toma de datos mediante plataforma robótica terrestre (UGV)
Pero todo esto solo será útil si parte de una base sólida: datos fiables, técnicos y bien estructurados. Porque la tecnología, por sí sola, no conserva edificios. Lo hacen las personas con criterio, apoyadas por herramientas que respetan lo construido y lo comprenden desde dentro.
El patrimonio edificado no es una colección de piedras antiguas. Es una expresión viva de nuestra identidad, de nuestra manera de habitar, de nuestros oficios, nuestras decisiones y nuestra memoria. Y conservarlo, hoy más que nunca, es una forma de cuidarnos como sociedad.
Las zonas rurales, a menudo, se enfrentan a desafíos que dificultan su desarrollo. La falta de infraestructura (física y digital), las oportunidades laborales limitadas, los riesgos ambientales y la necesidad de mayor inclusión social son solo algunos de los problemas con los que deben lidiar. Sin embargo, ahora tienen la oportunidad de tomar las riendas de su futuro y transformar su comunidad en un lugar más sostenible y próspero, gracias al proyecto RURACTIVE, en el que participa el área de Patrimonio de CARTIF.
Una de las herramientas más valiosas que ofrece RURACTIVE es el Programa de Monitorización Adaptativo. No se trata solo de recopilar datos “al tún-tún”, sino de comprender la realidad y asegurarse de que las soluciones que se implementen realmente beneficien a la zona a largo plazo.
Una visión clara de la situación
Antes de planificar un mejor futuro, es necesario entender cómo se está actualmente. Eso es exactamente lo que proporciona la Línea Base del Dynamo (que es como se han denominado a las zonas rurales participantes en el estudio). La línea base (o Baseline) proporciona un panorama detallado de las condiciones sociales, económicas, ambientales y culturales de la región. Gracias a 136 indicadores clave identificados, es posible ver con claridad las fortalezas y desafíos, desde las tendencias de empleo hasta el estado de la biodiversidad.
Esta línea base no es una fórmula genérica, sino que se adapta a la realidad de cada caso. Además, permite comparar el progreso con referencias regionales, nacionales e incluso europeas, asegurando que se mantienen alineados con objetivos de desarrollo más amplios. De entrada, esto ya supone ir un paso por delante (o dos) respecto de las formas habituales de estudiar el medio rural.
Una forma más inteligente de identificar y solucionar problemas
El Programa de Monitorización nos permite ir más allá de la simple identificación de problemas: nos ayuda a seguir su evolución y detectar señales de advertencia temprana antes de que se conviertan en verdaderos problemas. Los Indicadores de Alerta Temprana (o Early Warning Indicators, EWI) son fundamentales en este sentido, ya que nos dan la capacidad de actuar antes de que problemas como el declive económico o el deterioro ambiental estén fuera de control.
Al actualizar continuamente nuestra lista de indicadores, e incluir otros nuevos cuando sea necesario, aseguramos que el sistema de monitorización siga siendo flexible y adaptable. Esto significa que, a medida que la zona rural cambia, su capacidad para responder a nuevos desafíos también mejora.
Empoderando a las comunidades con datos y conocimiento
Uno de los mayores beneficios de participar en RURACTIVE es que las zonas rurales no están solas en este proceso. Gracias al Hub Digital de RURACTIVE, tienen acceso a una plataforma compartida donde pueden visualizar y analizar toda la información recopilada, cuando, donde y como quieran. Esto no solo hace que el progreso sea más transparente, sino que también permite que los líderes locales y la propia comunidad participen activamente en la toma de decisiones.
Además, el proyecto fomenta un enfoque participativo, lo que significa que ciudadanos, negocios y organizaciones locales tienen voz en la definición de prioridades y la evaluación del progreso. Gracias a este programa, las zonas rurales tienen una mayor capacidad de decisión, basada en datos reales, medibles y que las retratan.
Fig 1. Programa de Monitorización Adaptativo
La figura 1 muestra el proceso completo cuando un Dynamo accede al Ecosistema RURACTIVE y se aplica el Programa de Monitorización Adaptativo. Primero, se desarrolla una línea base completa que describe la situación actual de la zona rural, basada en los valores de los Indicadores Clave de Empoderamiento Rural (o Key Rural Empowerment Indicators, KREI). Esta línea base incluye una extensa lista de indicadores, pero se adapta a las condiciones específicas del territorio que se está analizando, de forma que es rápido y fácil obtener los datos necesarios, pues se vinculan a aspectos afines y conocidos. Con la información recogida, se elabora un diagnóstico que ayuda a identificar los desafíos a los que se enfrenta y las posibles soluciones que se aplicarán en una etapa posterior en el Plan de Acción Local (Local Action Plan: LAP). El siguiente paso es ajustar los indicadores, o incluso definir algún indicador nuevo adaptado a las soluciones identificadas, y determinar cuáles van a ser los indicadores de alerta temprana (EWI). La herramienta de monitorización gestiona la recogida y procesamiento de los datos, ayudando a conocer cuál es la evolución del plan de acción local de manera periódica.
Construyendo un territorio más fuerte y resiliente
Unirse a RURACTIVE y utilizar sus herramientas de monitorización no es solo una cuestión de números y estadísticas: es la clave para transformar una región en un lugar más conectado, resiliente y próspero. Gracias a un enfoque estructurado y basado en datos, se pueden diseñar estrategias que realmente funcionen, garantizando que la innovación, la sostenibilidad y la inclusión sean la base de su desarrollo.
Para un Dynamo, este no es un proyecto más, es una oportunidad única para tomar las riendas de su propio progreso, con el respaldo del conocimiento, la colaboración y las mejores herramientas disponibles en un mundo que irremediablemente ha de ser digital e interconectado.
Co-autora
Maya Tasis. Titulada en Ingeniería Técnica Industrial Mecánica por la Universidad de Oviedo. Experiencia en el exigente sector de la automoción, coordinando obras industriales, proyectos internacionales y gestión de equipos multidisciplinares. Actualmente investigadora de CARTIF, donde colabora en proyectos internacionales de mejora de procesos industriales y proyectos del área de Patrimonio cultural y natural.
Es de sobra conocido el término ecodiseño, pero seguro que habéis oído hablar poco de ecofabricación, más aún cuando es un término que no está ampliamente reconocido en la literatura técnica ni académica. Sin embargo, es un concepto que se viene utilizando recientemente para describir prácticas de fabricación que incluyen de forma central aspectos medioambientales. Pues voy más allá, a ver cómo os cuento de qué va la fabricación «metalecoaditiva», término que me acabo de inventar para darle título a esto.
Hace 40 años, Charles Hull y su invención de la estereolitografía (SLA) dio paso a lo que ahora conocemos como impresión 3D – o fabricación aditiva. Yendo un paso más allá, aparece después el concepto de impresión 3D de metales, que surge de décadas de desarrollo y experimentación, aunque su ideación se podría atribuir a Carl Deckard, pionero en el Sinterizado Selectivo por Láser (SLS) hace unos 30 años en la Universidad de Texas. Lejos entonces de su aplicación industrial, su desarrollo fue de la mano de más avances en materiales novedosos y láseres de alta potencia en los años 2000. Aunque muchos ya han oído hablar de procesos para impresión 3D de metales, como la Fusión Selectiva por Láser (SLM) o la Fusión por Haz de Electrones (EBM), cabe destacar que la tecnología tardó 10 años más en llegar a producciones industriales a gran escala – y no sólo prototipos, como se venía haciendo en fase de desarrollo para el sector aeronáutico, automotriz o médico (que son los que tenían el dinero para tales «juguetes»).
En los últimos 15 años, los procesos de impresión 3D de piezas metálicas han seguido mejorando considerablemente (en precisión, resolución, velocidad, propiedades físicas, control de calidad…), en gran parte por la aparición de nuevos materiales y las características que éstos presentan. Por otro lado, se han creado metodologías para analizar la eficiencia de los propios procesos de fabricación, control paramétrico, automatización y robótica, que repercuten directamente en los costes, y por tanto posibilitan la expansión de la aplicación de impresión 3D de metales a otros sectores. Actualmente, estos procesos mejorados incluyen, por ejemplo, la Fusión por Lecho de Polvo (PBF), la Deposición Directa de Energía (DED) o la fabricación aditiva por Inyección de Metal (Binder Jetting).
Bueno, pues todo esto de la fabricación aditiva es como todo proceso tecnológico – la mejora es imparable: no se hacen aviones ahora como hace 120 años, ¿verdad? Hace 120 años ya se volaba (12 segundos y 36,5 metros), pero no sé si estaríamos de acuerdo en definir volar a lo que hicieron los hermanos Wright en 1903. Su objetivo era «simplemente» volar y salir vivos. No creo que pudiesen imaginar que su curiosidad científica se convertiría en un pilar clave de la economía global, ni que pensasen en aviones de 600 pasajeros, en certificaciones que rigen el sector o la existencia ubicua de espacios para despegar y aterrizar.
De la misma manera, seguramente Carl Deckard, más allá de su interés científico en ingeniería mecánica, no se planteaba cambiar el mundo con su invención. Sin embargo, igual que lo hizo el transporte aéreo, la fabricación de piezas metálicas de forma aditiva ha tenido, tiene y seguirá teniendo un impacto enorme a nivel global. Tenemos ahora nuevas reglas de juego y posibilidades de fabricación de diseños, imposibles hasta hace bien poco (diseños generativos), ya que sus costes económicos y medioambientales eran prohibitivos y rozaban la locura. Por ejemplo, quien no sepa cómo se fabrica una turbina de un avión (¡¡al menos de qué se parte o cuánto se tarda!!), no puede valorar la locura a la que me refiero… ¡y cada vez hay más aviones!
La conciencia ecológica (tan necesaria actualmente), el desafío que tenemos por delante y la transición hacia la sostenibilidad van a impulsar la economía circular en el uso de la fabricación aditiva ( o impresión 3D) metálica. ¿O podría ser la fabricación aditiva quien potencie la sostenibilidad medioambiental? ¿O tal vez se pueda crear un «bucle virtuoso» en las que los dos ámbitos se retroalimenten, por medio de nuevos conceptos como el que yo acuño aquí como fabricación metalecoaditiva?
Simulación con lego de un laboratorio de fabricación metalecoaditiva. Autor: Norberto Ibán Lorenzana
La cosa es que todo evoluciona y nuevos retos entran en contienda; ya no va a valer sólo con diseñar trenes de aterrizaje que cumplan su misión: aparte de que no muera nadie, deben ser competitivos. Debemos ( y se nos va a exigir) saber que han sido creados de la forma más sostenible posible y bajo criterios de circularidad. ¿Cómo? Bueno, mirando al futuro, imaginemos que las condiciones de fabricación de una pieza de responsabilidad estructural pudieran combinar varios procesos de fabricación, y no sólo uno (maquinado) u otro (aditivado). Imaginemos también que fuéramos capaces de hacer piezas que, aunque por las condiciones del proceso (más veloces) tuvieran acabados inadecuados, éstos se pudieran corregir en tratamientos posteriores con técnicas que impliquen un menor esfuerzo. O incluso, que, ante una falla de pieza, pudiésemos reacondicionarla directamente: es decir, sobre la misma pieza imprimir lo que le falta, y que así la misma empresa usuario de la pieza pueda repararla en sus propias instalaciones. ¡No tendríamos una pieza que desechar! Ojo, ¡ni la necesidad de hacer una pieza nueva! No incurriríamos en inventarios de piezas, almacenamiento o transporte de esos repuestos, tan indeseable…
Pues bien, la combinación de la fabricación aditiva y la circularidad tiene un punto de sinergia que va a ser investigado e implementado durante los próximos 4 años a través de un proyecto europeo llamado DIAMETER, en el que participan más de 20 entidades de alto prestigio, de 4 continentes distintos. CARTIF es sólo una de estas entidades privilegiadas que ya han empezado a trabajar en construir un puente entre la fabricación aditiva de piezas metálicas y la economía circular.
Este puente será un marco donde analizar una serie de piezas metálicas usadas en casos críticos de varios sectores productivos, y fabricadas por diferentes procesos de fabricación aditiva. En DIAMETER, se contrastarán resultados físico-experimentales de los procesos de fabricación frente a simulaciones computacionales de las piezas en esos procesos para, con ello, prever las respuestas de las piezas frente a diferentes modificaciones del proceso. Estas respuestas (de tensiones/deformaciones, entre otros) aportarán un conocimiento mecánico de la pieza y del proceso en cuanto a fallos, desperdicios, calidad, o necesidad de integrar posprocesado (fabricación híbrida combinando aditiva y sustractiva). En definitiva, una combinatoria de posibles escenarios y resultados que deben ser transformados en resultados cuantificables bajo un enfoque de sostenibilidad para alimentar un sistema basado en inteligencia artificial que proporcione decisiones automatizadas y óptimas sobre procedimientos y configuraciones en la fabricación aditiva de las piezas metálicas.
«Alimentar un sistema basado en inteligencia artificial que proporcione decisiones automatizadas y óptimas»
«Un momento, ¡esto es una locura!»
A ver, sí, una locura casi tan grande como tallar (maquinar) un bloque de 3m3 de acero inoxidable en un torno de 6 ejes durante una semana para obtener una turbina de avión o una turbina hidráulica. O, dicho de otra manera, 500k€ durante una semana, con la posibilidad de que, si hay errores, haya que tirar la turbina y volver a empezar de cero.
Pero vamos a ir paso a paso. Lo primero va a ser caracterizar esos procesos de fabricación, ver cómo las piezas a fabricar se van generando y si estas sufren desvíos, imprecisiones, o analizar la propia calidad de la superficie. Para ello se va a emplear tecnología de visión artificial de verificación geométrica de piezas durante el proceso de fabricación, que son temáticas en las que CARTIF lleva trabajando 30 años…¡y lo que nos queda!
Co-autor
Iñaki Fernández Pérez. Doctor en Inteligencia Artificial. Investigador en el área de Salud y Bienestar de CARTIF. Actualmente colabora en varios proyectos que buscan aplicar tecnologías punteras (IA, IoT, Edge Computing..)
El Estatuto de Autonomía de Castilla y León destaca en su preámbulo y en varios de sus artículos el valor y la importancia del Patrimonio Cultural como parte esencial de la identidad de la Comunidad y como un activo a proteger y promover, por su singular riqueza y por el que somos conocidos fuera de nuestras fronteras. Este Patrimonio abarca bienes muebles, inmuebles y activos intangibles. Comprender y gestionar estos elementos es crucial para su protección, conservación y transmisión a las futuras generaciones, áreas en las queCARTIF viene trabajando durante 25 años, convirtiéndose en un referente internacional.
Las cifras son apabullantes: Castilla y León tiene protegidos singularmente más de 2.500 Bienes de Interés Cultural (BIC), de ellos 11 bienes están inscritos en la Lista del Patrimonio Mundial de la UNESCO, entre los que figuran tres de las nueve capitales de la región: Ávila, Salamanca y Segovia. Además, ha catalogado hasta la fecha más de 23.000 enclaves de interés arqueológico, más de 500 castillos y 12 catedrales, y una de las mayores concentraciones de arte románico del mundo. A su vez, se han inventariado más de 200.000 bienes muebles de la Iglesia Católica.
Gran parte de este inmenso Patrimonio Cultural de Castilla y León se encuentra en zonas rurales de la Comunidad, ya que:
Los 2.564 BIC protegidosse reparten entre 878 municipios, de los cuales el 94% se encuentran en poblaciones de menos de 5.000 habitantes.
El 1% de los municipios con más de 10.000 habitantes, que agrupan casi la mitad de la población de Castilla y León, solo cuentan con el 18% de los bienes.
2.564 BIC protegidos en 878 municipios
1% de los municipios cuenta con el 18% de los bienes
Estos números revelan que estamos ante un recurso tan insustituible como imprescindible para nuestro futuro, con un incuestionable valor educativo y social, más aún en el medio rural. Tiene, además, un considerable potencial económico, con la ventaja de ser endógeno y no deslocalizable. Lenta, pero inexorablemente, el Patrimonio se posiciona como una incontestable oportunidad de desarrollo y no como una carga económica.
La estimación llevada a cabo a partir del estudio de la Asociación de Entidades de Patrimonio Cultural (AEPC-integrada por 27 empresas de la Comunidad que dan empelo a 600 trabajadores-), pone de manifiesto que el sector de patrimonio en Castilla y León genera 225 empleos totales por millón de euros de inversión, que se reparten entre un 8% de empleos directos (17), un 8% indirectos (18), un 50% inducidos en otras industrias (113) y un 33% derivado en el turismo (77). Para rematar, cada euro invertido quintuplica el beneficio de la inversión.
En una Europa que se acerca más a ser un gran museo que una gran fábrica, ¿acabaremos de apostar por el filón que para nosotros supone el Patrimonio?
Refrescando tu memoria, en el blog anterior “De todo lo visible y lo invisible (I)” contamos brevemente cuáles son las tecnologías y técnicas digitales que sirven para investigar, documentar y analizar el Patrimonio Cultural en el rango visible (aquel que aprecian nuestros ojos). Es el momento de contarte ahora las tecnologías y técnicas complementarias que trabajan en otros rangos donde nuestro ojo no ve (lo invisible), permitiéndonos saber su composición, historia y necesidades de conservación. Aquí te van:
Rayos X: la radiografía y la imagen de fluorescencia de rayos X (XRF) son útiles para examinar la estructuración interna y la composición material de los objetos de patrimonio cultural. Estos métodos ayudan a descubrir capas ocultas y detalles constructivos que son vitales para dirigir los esfuerzos en restauración y conservación.
Fuente: rxpatrimonio.com
Imagen por infrarrojo (IR): la reflectografía de infrarrojo cercano (NIR), la termografía infrarroja y la espectroscopía infrarroja se utilizan para analizar pigmentos, identificar dibujos subyacentes o alteraciones, y estudiar la degradación de los materiales. Así podemos entender mejor las técnicas que originalmente empleaban los artistas y los cambios que los objetos han sufrido con el tiempo.
Imagen por ultravioleta (UV): se utiliza para resaltar los detalles superficiales de los objetos y las propiedades fluorescentes que puedan tener. Esta técnica revela marcas ocultas, retoques u otras modificaciones que no son visibles bajo condiciones de iluminación estándar, ofreciendo una retrospectiva sobre restauraciones anteriores y la historia misma de la pieza a estudio.
Análisis microscópico: el uso de microscopía óptica y electrónica permite el examen detallado de características minúsculas como pigmentos, fibras e inclusiones. El análisis microscópico es crucial en el estudio de los materiales y los procesos de degradación a nivel microscópico.
Fuente: «La microscopía en el estudio del biodeterioro y la conservación del patrimonio histórico y cultural». Ana M. García https://oa.upm.es/20369/
Técnicas espectroscópicas: métodos como la espectroscopía Raman, la espectroscopía infrarroja por transformada de Fourier (FTIR) y la espectroscopía de rayos X proporcionan información detallada sobre la composición molecular de los objetos de patrimonio cultural. Estas técnicas son esenciales para identificar pigmentos, analizar materiales orgánicos y detectar cambios relacionados con el envejecimiento y la degradación.
Técnicas de análisis químico: La cromatografía de gases-espectrometría de masas (GC-MS) y la cromatografía líquida-espectrometría de masas (LC-MS) se utilizan para identificar y caracterizar compuestos orgánicos presentes en objetos de patrimonio cultural. Estas técnicas ayudan a entender la composición material y los procesos de degradación, lo que a su vez permite definir las estrategias de conservación más adecuadas.
Técnicas de Ensayo No Destructivo (NDT): La tomografía computerizada (CT), la imagen por Terahercios (THz) y los ultrasonidos son cruciales para investigar la estructura interna y el estado de los objetos de patrimonio cultural sin causar daño. Estas técnicas revelan características ocultas, evalúan la integridad estructural e identifican posibles defectos.
Aunque la imagen por rayos X puede penetrar más profundamente, en materiales más densos y proporciona imágenes de mayor resolución que la imagen por THz, esta última es especialmente segura para materiales orgánicos, ya que no implica radiación ionizante (a diferencia de los rayos X, para los que se requieren estrictos protocolos de seguridad para prevenir daños en objetos históricos sensibles). La imagen por THz proporciona un excelente contraste en materiales orgánicos y compuestos, de ahí que se venga incrementando su demanda por su efectividad en pruebas no destructivas.
El equipamiento para imagen por THz es escaso en la UE, encontrándose principalmente en instituciones de investigación tecnológicamente avanzadas, museos importantes y laboratorios de conservación especializados. CARTIF tiene la suerte de contar con un sistema THz de doble fuente (100 GHz y 280 GHz), lo que lo convierte en el socio adecuado para apoyar a los museos y cualquier tipo de instituciones culturales centradas en la conservación del arte y la ciencia de materiales.
Imagen por THz de CARTIF para proporcionar información sobre la composición y estratificación de un pergamino: el auténtico pan de oro se diferencia claramente de otros materiales como adhesivos, pigmentos o sustratos subyacentes.
Se deben considerar métodos de análisis multimodal adicionales para incluir la dimensión temporal, pudiendo hacer así un seguimiento de la evolución de características y fenómenos a lo largo del tiempo. Esto implica la integración de los datos adquiridos por diferentes tecnologías visibles/no visibles en otras estructuras de datos más complejas que proporcionan nuevas oportunidades de análisis para científicos, restauradores y comisarios. A su vez esto requiere de herramientas avanzadas de procesamiento y visualización de esos datos, que actúen como entornos virtuales para un análisis preciso, permitiendo explorar completamente los siempre complejos objetos de patrimonio cultural.
Las plataformas colaborativas son esenciales para compartir e integrar datos digitales visibles y no visibles en este contexto, facilitando la cooperación entre investigadores y profesionales a nivel mundial, y mejorando la comprensión y conservación colectiva del patrimonio cultural.
La industria de la construcción está experimentando una revolución silenciosa. Mientras que las grúas y excavadoras siguen siendo protagonistas en las obras, un nuevo tipo de trabajador está ganando terreno: los robots colaborativos, o «cobots». Estos eficientes ayudantes van a transformar la forma en que construimos y rehabilitamos edificios. Pero, ¿qué son exactamente y cómo pueden cambiar las reglas del juego?
Los cobots: Más que simples máquinas
A diferencia de los robots industriales tradicionales, los cobots están diseñados para trabajar codo con codo (o más bien, brazo con brazo) con los humanos. Estos robots están equipados con sensores que les permiten detectar la presencia de personas y objetos en su entorno. De esta forma, pueden adaptar su movimiento y su fuerza para trabajar de forma segura junto a los trabajadores humanos. En el ámbito de la construcción, estos robots pueden ser de gran ayuda, especialmente en las tareas más pesadas, repetitivas y peligrosas.
Rehabilitación de fachadas: un nuevo enfoque
La rehabilitación de fachadas es un área donde los cobots pueden aportar un valor particularmente relevante. Estas tareas suelen ser laboriosas, peligrosas y requieren de una gran precisión. Hay varias tareas donde estos dispositivos podrían ser de mucha utilidad.
Inspección: Equipados con cámaras de alta resolución y sensores, los cobots pueden examinar minuciosamente cada centímetro de una fachada, detectando grietas, humedades o desperfectos que podrían pasar desapercibidos al ojo humano.
Limpieza: Robots especializados pueden limpiar fachadas de forma eficiente y uniforme, sin poner en riesgo a los trabajadores de andamios.
Aplicación de materiales: Ya sea pintura, selladores o revestimientos, los cobots pueden aplicar materiales con alta precisión y consistencia. Además, se reduce significativamente el desperdicio de materiales, ya que utilizarían la cantidad exacta necesaria en cada caso.
Reparaciones: Algunos cobots avanzados pueden realizar reparaciones menores, como rellenar grietas o reemplazar elementos deteriorados.
Impresión 3D: La impresión 3D utilizando cobots permite crear formas y patrones intrincados que serían extremadamente difíciles o costosos de lograr con métodos tradicionales. De esta forma, cada fachada puede ser único, adaptada perfectamente a las necesidades estéticas y funcionales del edificio y su entorno. Además, es posible imprimir directamente elementos como aislamiento térmico o acústico dentro de la estructura de la fachada. En este contexto, proyectos europeos en los que colabora CARTIF, como INPERSO, trabajan activamente en la integración de cobots para la rehabilitación e impresión 3D de fachadas.
Beneficios más allá de la eficiencia
La introducción de cobots en la rehabilitación de fachadas no solo mejora la eficiencia y la calidad del trabajo, sino que también aporta otros beneficios. En el ámbito de la seguridad, por ejemplo, ya que, al realizar las tareas más peligrosas, los cobots reducen significativamente el riesgo de accidentes laborales. También ayudan en la sostenibilidad, aplicando de forma optimizada la cantidad de material necesaria y reduciendo así los desperdicios. Por último, también facilitan la trazabilidad y documentación del trabajo realizado. Los datos recopilados durante las inspecciones robóticas proporcionan un valioso registro digital del estado del edificio.
Desafíos y consideraciones
A pesar de su potencial, el uso de robots colaborativos en construcción aún enfrenta algunos retos. Uno de ellos es el relacionado con las regulaciones existentes. Las normativas de construcción deben adaptarse para incluir esta nueva tecnología. Este problema es habitual en muchos ámbitos donde las innovaciones van por delante de las normas. También es necesario investigar sobre el comportamiento a largo plazo de los nuevos materiales asociados a estas técnicas y la durabilidad de las estructuras creadas. Finalmente, es necesario considerar los costes iniciales de estos sistemas robóticos. Aunque a largo plazo puede ser más económico, la inversión inicial en esta tecnología puede ser significativa y requiere un tiempo de retorno que hay que valorar.
El factor humano
A pesar de todos estos avances, es importante recordar que los cobots no están aquí para reemplazar a los trabajadores humanos, sino para complementarlos. Los profesionales de la construcción siguen siendo esenciales para la planificación, la toma de decisiones y las tareas que requieren un toque humano y creatividad. Uno de los objetivos del uso de este tipo de robots es liberar a los trabajadores de las tareas más pesadas, repetitivas y peligrosas.
Mirando hacia el futuro
A medida que la tecnología avanza, podemos esperar ver cobots aún más sofisticados en nuestras obras. Imaginemos robots que puedan comunicarse entre sí para coordinar tareas complejas, o que utilicen inteligencia artificial para adaptar sus métodos de trabajo a las condiciones específicas de cada edificio. La colaboración entre humanos y robots en la construcción y rehabilitación de edificios no es solo una tendencia pasajera, sino el futuro de la industria. Con cada fachada rehabilitada y cada edificio construido, los cobots están demostrando su valor, avanzando hacia un futuro más sostenible y seguro para el sector de la construcción. Estas tecnologías no solo pueden cambiar la forma en que construimos, sino también cómo concebimos la función y el diseño de los edificios. A medida que la tecnología avanza, podemos esperar ver edificios que no solo son estructuras, sino verdaderas obras de arte funcionales y sostenibles.