Tanto el biometano como el biohidrógeno son dos gases que vienen pisando fuerte en nuestro panorama energético actual. Ambos tienen un origen renovable y su formación puede ir asociada a procesos de captura y almacenamiento de CO2, otro de los grandes objetivos de nuestra sociedad para luchar contra el calentamiento global.

El biometano no es otra cosa que metano con origen renovable, en contraposición al gas natural donde el metano tiene un origen fósil. El biometano se genera habitualmente al purificar el biogás que se produce en los digestores anaerobios que tratan corrientes residuales como fangos de depuradora, estiércoles u otras corrientes biodegradables. Es la operación generalmente conocida como proceso de upgrading [1]. El biometano tiene la ventaja añadida de que es químicamente idéntico al gas natural, por lo que le puede sustituir en cualquiera de sus aplicaciones. Se espera, por ello, que el biometano juegue un papel trascendental para la descarbonización de la economía española y europea con miras al 2050 [2].

Si volvemos del biogás, su otro componente mayoritario es el CO2, pero existe la posibilidad de reintroducir este CO2 al digestor anaerobio o tratarlo en otro reactor y, a través de los que se conoce como proceso de metanación, generar más biometano [3]. Es decir, podemos emplear CO2 para generar metano, ¿quién da más? Pero este proceso no está tan maduro como el de la digestión anaerobia convencional y, si bien se ha demostrado que es técnicamente factible ( se conocen en Europa más de 100 plantas operativas), el rendimiento del proceso necesita mejorar para que su viabilidad económica esté fuera de toda duda.

Una vez que disponemos del biometano, otra opción que tenemos es generar hidrógeno verde (denominado así por su origen renovable) a través de un conocido proceso de reformado. El reformado de gas natural para producir hidrógeno es una práctica industrial habitual, por lo que reformar biometano es una opción totalmente plausible. El reformado habitual se realiza haciendo reaccionar el metano con vapor de agua, pero ya hay trabajos que han demostrado la posibilidad de sustituir ese vapor de agua por CO2, por lo que volvemos a utilizar el dióxido de carbono como materia prima, retirándolo de la atmósfera y produciendo en su lugar el tan deseado hidrógeno.

Pero el hidrógeno también puede tener un origen biológico, que es lo que se conoce como biohidrógeno. En la naturaleza existen algas y bacterias que generan hidrógeno a través de sus ciclos metabólicos. Dichos organismos, cultivados en un medio controlado, pueden convertirse también en una fábrica de biohidrógeno. En este caso, y al igual que ocurría en los procesos de metanación, se ha demostrado que los procesos funcionan y pueden ser escalables, pero los rendimientos que se alcanzan en la actualidad siguen siendo una barrera a su implementación con fines industriales.

Pero para eso está la investigación, para seguir trabajando y hacer que estos procesos (y otros de los que hablaremos en otra ocasión) sean una realidad en el corto-medio plazo.

[1] Hidalgo, D., Sanz-Bedate, S., Martín-Marroquín, J. M., Castro, J., & Antolín, G. (2020). Selective separation of CH4 and CO2 using membrane contactors. Renewable Energy, 150, 935-942.

[2] Elguera, N. M., Salas, M. D. C., Hidalgo, D., Marroquín, J. M., & Antolín, G. (2020). Biometano, el gas verde que pide paso en España. IndustriAmbiente: gestión medioambiental y energética, (30), 50-56.

[3] Hidalgo, D. Martín-Marroquín, J.M. (2020). Power-to-methane, coupling CO2 capture with fuel production: An overview. Renewable and Sustainable Energy Reviews, Volume 132, 110057.

María Dolores Hidalgo
Últimas entradas de María Dolores Hidalgo (ver todo)
Share This