One of the main challenges facing the Spanish Mediterranean basin is the scarcity of water resources, a critical factor for agricultural production in the region. Agriculture is a vital economic sector, dominated by irrigated crops such as vegetables and, currently, olive groves. The latter, traditionally rainfed, have been converted to irrigated crops due to the decrease in rainfall observed in recent decades. Both vegetables and olive groves require a constant and adequate water supply during their most demanding production phases, which intensifies the pressure on the limited water resources available in the area.
These irrigated crops are essential not only for food production but also for the local and national economy. For example, olive oil production in Andalusia is a fundamental pillar of the Mediterranean diet and represents a significant portion of Spain’s agri-food exports. In 2023, Spain exported 684,500 tons of olive oil, demonstrating the importance of this sector in international trade. The olive tree, although drought-resistant, has specific water requirements that are crucial for its development and production. Generally, olive trees require between 0.4 and 0.8 litres of water annually, depending on factors such as soil type, tree age, and climatic conditions. During critical periods, such as flowering and greening, water needs increase considerably, making adequate irrigation vital to ensure a quality harvest.
Furthermore, the quality of water used for irrigation is crucial. Water with high salinity or contaminants can negatively affect olive tree growth and the quality of the oil produced. Inadequate irrigation can lead to problems such as reduced yield and concentration of phenolic compounds, which are essential for the organoleptic properties of olive oil. Therefore, the use of quality water is not only vital for the health of the olive tree but also directly influences the quality of the final product, impacting the profitability of the crop.
However, the dependence of these crops on irrigation water poses various challenges for long-term sustainability, especially in the context of climate change that is exacerbating water scarcity. Efficient management of water resources thus becomes a priority to ensure the viability of olive oil production and other crops in the region.
The PRIMA NATMed project, coordinated by CARTIF, addresses water scarcity in the Mediterranean region through the implementation of Nature-based Solutions (NbS) in existing water infrastructures. Its innovative approach, based on the development and implementation of “Full-Water Cycle-NbS”, aims to optimize water management and improve related ecosystem services, while providing environmental, social, and economic benefits to Mediterranean communities.
One of NATMed´s key initiatives is the implementation and improvement of reclaimed wastewater treatment and storage systems for reuse in agriculture. This strategy provides an alternative water source that not only helps conserve natural water sources by reducing the overexploitation of ecosystems and water resources, but also provides farmers with a reliable source of irrigation, especially in water-scarce regions. Furthermore, the use of reclaimed water supplies nutrients to crops such as phosphorus and nitrogen, which reduces the need for chemical fertilizers and, consequently, decreases production costs, thus contributing to the economic and environmental sustainability of agriculture in the Mediterranean region.
An example of this strategy is the Spanish case study of the project located at the Center for New Water Technologies (CENTA) in Carrión de los Céspedes, Seville, where the combination of various artificial wetlands is being optimized with the aim of providing reclaimed water for irrigation of crops such as olive groves. These wetlands can be of different types, including:
Hybrid configuration: Vertical Subsurface Flow + Free Water Surface.
Floating helophyte wetland.
Aerated treatment wetland.
French vertical flow wetland
Artificial wetlands are human-created ecosystems that emulate the natural water purification processes found in natural wetlands. These NbS leverage an intricate network of interactions between substrate, plants, and microorganisms to effectively purify wastewater. As water flows through the wetland, contaminants are removed through a series of complementary processes: suspended solids are trapped in the maze formed by the substrate and plant roots; organic matter is decomposed by a diverse community of microorganisms thriving in both aerobic and anaerobic conditions; nitrogen is absorbed by plants or transformed by specialized bacteria; phosphorus is captured by the substrate; and pathogens are neutralized by a combination of factors, including toxic substances produced by plant roots and the action of predatory microorganisms. This synergy of physical, chemical, and biological processes makes artificial wetlands an effective and sustainable solution for wastewater treatment.
Finally, the optimization of artificial wetlands developed in the NATMed project seeks to address the challenge of water scarcity in irrigated agriculture by providing alternative irrigation sources, which also reduce the need for chemical fertilizers, thus contributing to the environmental and economic sustainability of the region. As part of this approach, irrigation water quality parameters will be measured to ensure compliance with current regulations, in addition to analysing the nutrients provided to the soil, such as phosphorus and nitrogen, and their impact on crop production. A key aspect of the project is its potential for replicability in other locations to address the challenge of water scarcity in the Mediterranean region, which is being facilitated through engagement and training activities with relevant stakeholders in the area. These initiatives are fundamental to ensuring the long-term viability of agriculture in the region in the face of climate change and increasing water demand.
Spain is well known for its Mediterranean climate, characterized by high temperatures and low precipitation, particularly during summer. These features attract many tourists every year that choose Spain as holiday destination to enjoy its sunny beaches, vibrant cultural experiences and outdoor activities. Unfortunately, this climate is not only perfect for tourism but also fosters conditions that can lead to the outbreak of wildfires. And guess what? The increasing heatwaves and prolonged dry spells, caused by climate change, aggravate the work of the firefighters who need more resources to extinguish the fires.
Spain’s Fiery Stats: Where do we stand?
In 2023, the European Forest Fire Information System (EFFIS) ) estimated that around 91,000 ha of forest area were burnt. That’s like burning through the size of nearly 130,000 soccer fields! By using EFFIS data, it was possible to compare the surface of burnt area in several EU countries. The outcomes of this comparison are that, in 2023, Spain was the third country with most burnt area just after Greece (174,773 ha) and Italy (97984 ha). It is relevant to notice that Greece, Italy and Spain present similar climatic conditions, characterized by high temperatures and low precipitation.
And here’s the kicker: in 2024, the flames have already gobbled up 37,000 hectares, putting Spain ahead of other Mediterranean countries. The recent Andújar wildfire in Jaén (Andalusia) alone scorched 835 ha of area that usually hosts an extensive variety of flora and fauna.
Hot zones: Where wildfires hit the hardest in Spain
Not all of Spain is equally flammable, but some regions are definitely more fire-prone. Andalusia frequently experiences wildfires, particularly in areas with dense forests and shrubland. Remember the Sierra Bermeja fire in 2021? It was one of the worst wildfires in years. Cataluña, especially near the Pyrenees, also faces frequent wildfires, like the intense blazes during the scorching summer of 2022. And let’s not forget Galicia in the northwest, where wildfires regularly sweep through rural and forested areas.
What’s fuelling the flames?
Humans, of course! Whether it’s a careless camper, an arsonist, or a farmer burning fields, we’re often the ones lighting the match. But climate change effects are also major catalysts for wildfires. Rising temperatures, causing increased heat and dryness that make the vegetation more susceptible to ignition by reducing their moisture. Shifting precipitation patterns, which mean more drought frequency, making vegetation more prone to catch fire.
And don’t forget extreme weather events such as wild storms, that can produce lightings and thereby increasing the likelihood of natural ignition, while strong winds fan the flames, compromising the control of the fires, and making them spread.
The aftermath: What’s at stake?
When wildfires rage, the damage is not just environmental, it is economic and social, too. Forests and natural habitats are destroyed with the related loss of biodiversity, soil degradation, and increased carbon emissions is a direct consequence of wildfires on the environment. Economically, the destruction of homes, infrastructure, and agricultural lands hits communities hard. Tourism, a lifeline for many regions, can also be severely affected. And let’s not overlook the health risks. Wildfire smoke can affect vulnerable populations like the elderly and those with respiratory conditions, leading to respiratory illnesses and other health issues after a prolonged exposure.
Fighting fire with strategy and innovation
Battling wildfires is not just about putting out flames; it is about being smart before they even start. That means investing in research to understand fire behavior and the impacts of climate change, developing new firefighting technologies, and educating the civilians to increase public awareness on this matter.
The Spanish government is also stepping up with strategies and solutions to mitigate the risks of wildfires and adapt to the challenges posed by a changing climate that can worsen these risks like better land management practices (e.g. clearing vegetation and creation of firebreaks), reforestation with fire-resistant species, and enhancement of early warning systems. Moreover, the implementation of a well-organized firefighting system including brigades, aerial units and military units is essential to quickly control wildfires. Additionally, the European Union supports Spain through the European Civil Protection Pool, providing further resources to fight extensive wildfire.
CARTIF’s contributions to address fire risks in Spanish regions
RethinkAction, project led by CARTIF comprises the Almería province in Andalusia as one of its case studies. The project collects information on the area (e.g. historical and future values of climate variables), assesses the potential climate-related risks and creates risk maps. These maps provide useful insights on the risk of drought, heatwaves and storm in each municipality of the province and each vulnerable sector that can be exposed to these risks such as agriculture, tourism, water management and biodiversity.
Furthermore, CARTIF participates to the NEVERMORE project. This project includes the Region Murcia as case study. A climate-related risk assessment is performed also for this region and a map highlighting the most affected municipalities is produced. Such as the RethinkAction project, the NEVERMORE project provides relevant information not only on the most affected municipalities but also on the most vulnerable sectors involved. Knowing the municipalities with high probability to be affected by climate change is incredibly relevant for the prevention of fires, to identifying the missing resources that are necessary to contain possible outbreaks.
Over the past decades, hydrogen has been identified as a potential clean fuel, although its mass adoption has been hampered by the abundance of oil and low relative prices of fossil fuels, as well as, in recent years, by the advance of the battery electric vehicle. Today, while technological advances have brought down the costs of hydrogen production and use, it is essential to scale up these technologies and define a roadmap to optimise the necessary investments. The current energy transition points to an era of sustainable energy gases, and the consumption of renewable hydrogen and methane is expected to surpass that of coal and oil in the 21st century. In this context, renewable hydrogen, or hydrogen produced with low CO2 emissions, emerges as a key player in the decarbonisation of the global economy.
Biohydrogen is a specific type of renewable hydrogen defined as hydrogen produced by biological processes or from biomass as feedstock. Biomass, one of the most abundant renewable resources on all continents, is the subject of increasing research into its alternative uses and valorisation. This interest is also focused on the conversation of waste streams into energy, because of the potential to transform large quantities of agricultural, forestry, industrial and municipal waste into biohydrogen and other renewable gases, thus benefiting sustainable development. The efficient use of renewable feedstocks derived from biomass and waste as a fuel source clearly presents a significant opportunity for a more sustainable planet.
“Biohydrogen. Specific type of renewable hydrogen defined as hydrogen produced by biological processes or from biomass as feedstock”
Biohydrogen has characteristics that make it a renewable element capable of providing safe, economically competitive and 100% carbone dioxide-free energy in its production and use. Despite this, the penetration of this low-carbon hydrogen remains limited. It is crucial to understand the reasons for this situation, the emerging trends and the technological route that will enable its consolidation as an energy vector.
Biohydrogen production
Biohydrogen production has gained worldwide attention due to its potential to become an inexhaustible, low-cost, renewable source of clean energy. Feedstocks for its production include lignocellulosic products, agricultural residues, food processing residues, aquatic plants and algae, and human effluents such as sewage sludge. Under proper control, these resources will become a major source of energy in the future. Biomass has the potential to be an important source of renewable hydrogen, complementing other processes that produce biomaterials.
The main methode of obtaining biohydrogen is from biomethane generated in anaerobic digestion, through a process known as reforming. Gasification, on the other hand, converts organic matter into hydrogen-rich synthesis gas. Alongside these thermochemical technologies, biological hydrogen production, such as dark fermentation and the use of microalgae, offer additional promising methods. Dark fermentation uses anaerobic bacteria to break down organic matter and produce hydrogen. Microalgae, on the other hand, can generate hydrogen through biophotolysis, a process that converts sunlight and water into hydrogen and oxygen. This set of technologies presents a wide range of possibilities for biohydrogen production.
Storage and distribution
The storage and distribution of hydrogen in general, and biohydrogen in particular, represent crucial aspects of its large-scale adoption. Storage in high-pressure tanks is currently the preferred option, although other methods exist, such as injection into existing gas infrastructure of storage in chemical materials. Hydrogen can be stored in a gaseous or liquid state, either on the surface or in solids, or in hydrogen-bearing chemical compounds. These storage options aim to overcome current limitations and facilitate the uptake of hydrogen as an energy carrier.
Applications and uses
The current interest in the hydrogen economy is due to its enormous opportunities for penetration in the energy sector, especially in mobility and chemicalstorage of renewable energy. In the case of biohydrogen, it is also an efficient method of managing organic waste streams. The production of renewable hydrogen has increased in recent years, mainly used in the manufactureof ammonia. Renewable ammonia can also be used as an energy storage medium, energy carrier or fuel. Hydrogen production therefore not only has industrial applications, but also offers innovative energy solutions.
In metallurgy, hydrogen is used in the direct reduction of iron for steel production, and in transport, it can generate clean energy in vehicles. These diversified applications demonstrate the potential of biohydrogen to transform key sectors of the economy. However, its large-scale adoption requires overcoming technological, logistical and market barriers, as well as establishing appropriate policies for its regulation and development.
Biohydrogen perspectives
Biohydrogen, like other energy carriers, has advantages and disadvantages. While other forms of energy already have an established position, hydrogen, and in particular biohydrogen, is progressively advancing in trying to replace options such as coal or natural gas in sectors such as energy, industry and transport. The main driver for this is the need to reduce pollutant emissions, which has generated considerable interest in this energy vector. However, low energy density, infrastructure and installation costs, and factors associated with security are the main barriers slowing down its implementation. While some of these barriers can be removed by cost reductions resulting from research breakthroughs, others, such as energy density, cannot be changed. Here, the use of derivatives mainly from the chemical industry can play a key role in the energy system or in the transport sector.
Barriers can be addressed or adapted, but this will not be achieved without a joint effort by both the private and public sectors. There must be joint objectives and policies on aspects such as the homogenisation of standards that affect, above all, storage limits. Currently, there is no robust global market due to low demand, which is partly a consequence of low generation and direct consumption at generation sites. As biohydrogen progressively breaks through, demand will increase and generation will have to be done on a large scale. This increase in generation and demand will make material transport routes, which are cost-effective especially over long distances, viable. Hydrogen-specific pipelines, trucks and shipping routes will emerge to meet this demand. With this opening and development of adapted means for hydrogen and biohydrogen, a progressive increase in the areas of potential use will be observed, where transport, especially by heavy vehicles and ships, and energy storage in liquid ammonia tanks will play a key role.
Biohydrogen has the potential to solve today’s pollution problems, but its widespread use is not immediate. The change starts now and the willingness to change must be evident. The next steps include research into all biohydrogen production processes to increase their efficiency and thus their competitiveness; integration of distribution and demand interfaces; management of global policies and technologies; coordination in the face of multilateral sectoral initiatives; and the creation of a knowledge base to serve as a model for the establishment of initiatives.
More information about this theme:
Hidalgo, D., Martín-Marroquín, J. M., & Díez, D. (2022). Biohydrogen: future energy source for the society. In Organic Waste to Biohydrogen (pp. 271-288). Singapore: Springer Nature Singapore.
Fermentation is perhaps one of the oldest technologies that has accompanied humanity for thousand of years. Throughout history, numerous evidences and traces have been found that demonstrate the use of fermentation by several cultures and civilisations, as a common and fundamental practice in the production of food and beverages, or even for medicinal and ceremonial purposes.
For example, archaeological remains have been found in China (7000-6600 BC ) of a fermented drink made from rice, honey and fruit in ceramic vessels, or in Iran (5000 BC) ceramic jars with wine residues, or Egyptian hieroglyphs and papyri (2500 BC) describing the production of beer and wine, as well as their consumption in religious ceremonies everyday life.
In addition, the analysis of botanical remains (seeds, plant fragments) has provided evidence of the use of fermented plants, or more recently the analysis and study of the DNA of yeasts and other microorganisms has provided genetic evidence of the use of fermentation since ancient times. These ancient methodes laid the foundations for the use and evolution of a practice that has evolved significantly over time.
The application of biotechnological techniques for the manufacture of pharmaceutical, biofuels, fertilisers and nutritional supplements has proven to be an age-old tool that has been adapted and sophisticated to suit today´s needs.
Global challenges such as environmental sustainability, food security, food scarcity, waste reduction and recovery find in fermentation a powerful tool to address these problems.
In this way, the use of different microorganisms can be the key to the revalorisation of different by-products and waste from industry, transforming them into high-value products such as biofuels (biodiesel, biogas), biodegradable compounds (bioplastics), or molecules of interest (lipids, organic acids, dyes, etc.) that can be incorporated back into the value chain thus contributing to a circular economy.
Fermentation can transform some agri-food by-products, which would otherwise be wasted, into products with an improved organoleptic profile by reducing or transforming undesirable compounds that negatively affect taste and texture. In this way, fermentation processes can improve the organoleptic profile and, thus the acceptability of certain by-products, which can then be incorporated back into the value chain.
Another future challenges is the increase in the world´s population, which brings with it an increase in demand for protein and poses challenges to the sustainability of traditional protein sources such as meat and dairy products. This is where the use of microorganisms, in this case fungi fermentation, emerges as an alternative to traditional protein sources. Fungi fermentation is key to obtaining microproteins that allow the development of flavours and textures that mimic meat and are sensorially appealing to the consumer. These types of proteins are rich in high quality nutrients, and are also presented as an alternative that requires fewer natural resources (water and land) and produces fewer greenhouse gases.
Fermentation also has the potential to mitigate pollution, playing an important role in waste management and pollutant reduction. Thus, certain organic wastes (waste oils, industrial waste, polluted waters) can be fermented to produce biogas, fertilisers and bioplastics, or it can be used to treat wastewater by reducing organic compounds before they are released into the environment. These processes can also be used in biorremediation processes, soil and contaminated area treatments.
According to the latest research, certain bacteria and fungi could be used to ferment and degradeplastics, such as polyethylene and polyester, or even use them as a source of carbon to obtain compounds of interest.
Therefore, fermentation today isn´t restricted to its use in the food industry for the production of fermented foods. Society must recognise and explore the alternatives offered by biotechnology, and in particular fermentative processes, to face present and future challenges.
Harnessing the abilities of bacteria, yeasts and fungi to transform waste materials into useful products, reduce waste and pollution will allow us to move towards a cleaner and sustainable future, thanks to micro-organisms, felow travellers that have served mankind for thousand of years, and may now be the solution to many of our future challenges.
Water security is an essential concept defined as ´the ability of humankind to protect sustainable access to water, ensuring well-being, livelihoods and socio-economic development´. This concept includes taking measures to protect the ecosystems that provide this vital resource and to secure the ecosystem services linked to water. It is not only about ensuring that there is enough water, but also that it meets high quality standards and meets the agricultural, industrial, energy and domestic needs of a specific region.
The preservation of environmental systems, which constitute the natural sources of water and related ecosystem services becomes essential.
The Global Water Partnership1, an international network dedicated to sustainable water management, describes a water secure world as one in which every person has access to safe and affordablewater for a healthy and productive life, and in which communities are protected from floods, droughts and water-borne diseases. It adds that water security promotes environmental protection and social justice in the face of conflicts over shared resources.
The UN has sounded the alarm about the water deficit that is expected in the future. According to its estimates, by 2030 the Earth could face a 40% deficit if current consumption patterns are not changed. Population growth, especially in urban areas, has increased pollution that affects water quality, not only through air pollution, but also through changes in land use. Water consumption has doubled in the last half century, and it is estimated that by 2025 at least two-thirds of the world´s population will live in areas of high water stress.
Climate change also poses an additional risk to water security, reducing water availability and making it increasingly unpredictable in many parts of the world, leading to major supply problems. In addition, extreme weather events, such as droughts and floods, affect rich and poor alike, disrupting traditional livelihoods and production patterns.
In Castilla y León, water security is already a critical issue, given the importance of our agricultural sector in food production, twhich is highly dependent on a constatn supply of water. The region´s agriculture relies heavily on the production of cereals, wine and horticultural products, and is being affected by climate variability, including prolonged droughts that deplete water resources and jeopardise the sustainability of crops. Similarly, the region is experiencing increasing water stress aggravated by climate change, which threatens food production and affects the balance of the rural economy, thus increasing the already pressing problem of depopulation of our villages or rural environments.
Farmers face an increasingly difficult challenge: maintaining productivity in a context of limited water resources. Many have had to adapt their techniques, investing in efficient irrigation and crop diversification to mitigate the impact of droughts. However, these solutions come at a high cost that not everyone can afford, highlighting the urgency of finding more inclusive approaches. This is where Nature based Solutions (NbS) come in, offering a sustainable alternative to follow.
Nature-Based Solutions are vital to address these problems in a creative way and at the same time provide additional sustainability benefits. UNESCO, in its World Water Development Report, argues that NbS can improve water supply and quality while mitigating the impact of natural disasters. A clear example is restored watersheds and wetlands, which act as natural filters for water purification. By mimicking natural processes, NbS improve water availability and quality and reduce water-related risks.
It is essential to highlight the importance of conserving wetlands and restoring river basins the region, as they act as natural filters, improving water quality and regulating flow in times of drought. Techniques such as agro-forestry and crop rotation can also be explored to maintain soil fertility and reduce dependence on intensive irrigation systems. These practices mimic natural processes and help maintain a balance between production and conservation.
The Global Water Security Index (GWSI)3 , which integrates criteria such as water availability, accesibility, security and quality, standardises water vulnerabilities and risks, helping to identify priority areas where action is urgently needed. This index also highlights the need for innovative strategies that combine green infrastructure with traditional solutions, maximising value for society.
It is also important to highlight the relevance and scope of water security in urban settings, where it encompasses five dimensions: environmental, domestic, economic, urban and resilience to natural disasters. All these aspects make the lack of water security one of the greatest risks to global prosperity and underline the urgent need to take care of the natural resource “water”. This implies sustainbale management, responsible consumption, combating degradation and reuse.
In the Natural Resources and Climate Area of CARTIF, we develop diverse projects related to sustainable water management as basis for water insurance, both for human consumption and for agricultural consumption.
We coordinate the PRIMA NAT-med project, in which we aim to develop, implement and validate a set of Nature-based Solutions, combined in Full Water Cycle-NbS (FWC-Nbs), integrated in existing water infrastructures (grey or natural) and based on specific phases of the water cycle, to optimise the provision of water-related ecosystem services (quality and quantity) and water-dependent ecosystem services (social, economic and environmental aspects), empowering stakeholders and local communities in the Mediterranean region. NATMed will also demonstrate the effect of different SbN-CCA in five case studies located in Spain, Greece, Italy, Turkey, Algeria.
Similarly, through our CIRAWA project coordination work, we work in 8 regions in Cape Verde, Ghana, Senegal and The Gambia to improve agriculture by developing new agroecology-based practices that build on existing local and scientific knowledge to help create more resilient food supply chains in West Africa, and where sustainable water resource management is essential.
From the Natural Resources Area of CARTIF, like many other ´guardians of water`, we work to improve water security, using Nature-based Solutions, as part of our vital commitment to the future of the planet. Only through intelligent and collaborative management can we build a world in which every person has access to water and can live with dignity, ensuring that future generations will also enjoy it.
2 WWAP & ONU-Agua. (2018). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2018: Soluciones basadas en la naturaleza para la gestión del agua. París: UNESCO.
In the fight against climate change, technological innovations is one of our most powerful allies. One of the most promising and challenging areas in this regard is the transformation of carbon dioxide (CO2), a prevalent greenhouse gas, into useful raw materials for industry and transport. This approach not only promises to mitigate greenhouse gas emissions, but also opens the door to a circular economy where waste becomes a resource.
Challenges and opportunities of CO2 as raw materia for industry
CO2 is the main contributor to global warming, arising mainly from the burning of fossil fuels and deforestation. The concentration of CO2 in the atmosphere has unprecedented levels, making it imperative to find effective ways to reduce these emissions. Capturing and utilising of CO2 is a promising strategy, transforming this gas into valuable products, which could revolutionise sectors such as transport and manufacturing, significantly reducing our carbon footprint.
Converting CO2 into value-added products: key technologies to meet the challenge of decarbonisation of industry and economy
CO2 transformation into raw materials involves several methods, including electrochemistry, catalysis and biotechnology. These technologies aim to convert CO2 into fuels, plastics, building materials and other industrial chemicals, which basically fall into three types:
Biotechnology: based on biological fermentation processes with gas-liquid phase substrate. It uses genetically modified organisms, such as microalgae and bacteria, to absorb CO2 and convert it into biofuels an chemicals. This approach offers the potential for highly sustainable processes that can operate under ambient conditions.
Electrochemical technology: based on the use of electrical energy and potential difference between two electrodes to reduce CO2 into value-added chemicals (e.g. methanol, formic acid, etc.) which can be used as e-fuel, H2-bearing green molecules, or chemical precursos for industrial use. The efficiency of these processes has improved significantly, but they still face challenges in terms of scalability and costs.
Chemical-catalytic processes: based on the use of catalysers to active and accelerate the chemical reaction and transformation of CO2 into value-added products (methane, methanol, dimethyl ether, ,etc.)Current research lines are exploring new catalysts that can operate at low temperatures and pressures, making the process more energy efficient and economically viable.
On the other hand, CO2 transformation faces technical, economic and regulatory hurdles. Energy efficiency, cost reduction and integration of these technologies into existing infrastructure are key challenges. In addition, a regulatory framework is required to promote investment in these technologies and the use of CO2 products.
Despite these challenges, the capture and uses of CO2 as a renewable carbon source and to contribute to the decarbonisation of industry and transport, offers an unprecedented opportunity to mitigate climate change and advance towards a more sustainable and circular economy. By turning a problem into a solution, we can unlock new pathways for environmental sustainability, technological innovation and economic growth. Collaboration between governments, industries and scientific communities will be essential to overcome these challenges and harness the potential of these technologies for a greener future.
R&D projects such as CO2SMOS, coordinated by CARTIF´s Biotechnology and Sustainable Chemistry area, aims to develop a set of innovative, scalable and directly applied technologies in the bio-based industries sector that will help to convert biogenic CO2 emissions into value-added chemicals for direct use in the synthesis of low carbon footprint material bioproducts. To this end,and integrated hybrid solution is proposed that combines innovative technologies and intensified electrochemical/catalytic conversion and precision fermentation processes, together with the use of renewable vector soruces such as green H2 and biomass. Key elements to achieve the indsutry´s goal of zero-emissions and climate neutrality.