Of the pig, even its walk

Of the pig, even its walk

When we see a pig, we all tend to think that every part of it can be used: its delicious hams, pork cracklings, chorizo, loins…..including, as the saying goes “even its walk”. However, at CARTIF we know there ir more beyond that: a great variety of by-products and waste generated during the stages prior to the production of all these products.

A similar situation occurs in the sheep sector. Is not only about milk, used for cheese, or meat, such as suckling lamb, but many types of waste also appear throughout the processing stages, such as skins, viscera, or blood, whose treatment entails, apart from its environmental impact, an additional cost for companies.

The cattle sector, in turn, shares common challenges with the previous ones, facing the management of a long list of waste products such as manure, slurry, blood, bones, viscera, and skins, among others.

In the current context where sustainability and circular economy principles are gaining increasing relevance in industrial processes, waste recovery in the meat industry emerges as a key strategy to optimize resources and reduce environmental impact. The activities of the sheep, pig and cattle sectors (which together account for up to 75% of national meat production) offer enormous potential for the full utilization of their waste. In short, we can talk not only about excellent products (milk, cheese, chorizos or hams), but also about good practices by meat companies, closing the production cycle by generating added value through waste recovery. In most cases, these type of waste are managed by external handlers, representing an additional cost for producers. For this reason, all by-products generated in the meat industry require efficient management and call for innovative ideas to turn them into valuable products.

Source:

An analysis of the meat production process, according to Nedgia, estimates that a cow produces 50kg of manure per day, which amounts approximately 18,250kg/year (1). When the cow arrives at the slaughterhouse, approximately 40 to 50% of its weight consists of by-products, such as bones, blood, hide, víscera, inedible fat and rumen content, all of which must be properly managed.In addition to this, processing a cow at the slaughterhouse may require between 500 and 1,000 liters of water (2), which subsequently becomes a wastewater stream that also needs to be treated.



On the other hand, animal hides are already valorized in the textile and footwear industries, but currently, their demand has decreased compared to other fabrics and synthetic leathers. Therefore, efforts are being made to find alternative applications for their utilization. From hides, as well as from bones and cartilage, collagen can be extracted- a product highly sought after by the cosmetics industry due to its many health benefits. Collagen helps create a protective barrier on our skin against external agents, provides firmness and resilience, promotes wound healing, delays the effects of aging and reduce wrinkles, among other benefits (3). Moreover, its use is associated with improvements in the treatment of common diseases such as osteoporosis, arthritis and osteoarhtritis.

According to the Spanish Academy of Nutrition and Dietetics (AEND), from the age of 25, collagen production in a healthy person begins to decline, and it is estimated that by the age of 40, the body produces only half as much collagen as it did during adolescence, with this decrease becoming more pronounced in women after menopause (4). Moreover, one of the reasons why our bones weaken is due to the lack of collagen in the body (5). Many of us remember seeing our grandmothers boiling cow bones to extract collagen, straining the broth for consumption; when refrigerated, this broth would turn into a gelatin rich in collagen. Today, it is possible to replicate this process in the laboratory to obtain concentrated collagen as a nutritional supplement, which requires a purification process that presents various challenges related to obtaining pure collagen, free of fats and other proteins.

Illustration of young skin layers and components

Illustration showing layers and components of aged skin

Regarding blood, this fraction represents approximately 3–7% of the live weight of the animal, depending on the species, and has traditionally been used in the production of food products (such as blood sausages and others). However, it is also possible to use it for obtaining food colorants or for the extraction of hemoglobin and/or protein that can be incorporated into various products for human or animal consumption. Once the blood has been collected and treated, plasma can be separated from hemoglobin, or the entire fraction can be dried to obtain a protein-rich product.

Another meat by-product is the intestines of animals, which are currently used in the production of sausages such as salchichón, blood sausage, chorizo, and regular sausages, among others. However, the utilization of this fraction (and its associated economic value) remains quite limited. For many years, it has been known that intestines are a rich source of heparin, a highly demanded medication worldwide due to its clinical use as an anticoagulant. The process of obtaining highly pure and stable heparin requires a lengthy preparation and laboratory treatment. Numerous challenges must be overcome during its extraction, such as selecting the most appropriate extraction and purification methods. In addition to using resins, there are other methods that allow heparin to be isolated from other compounds (proteins and other contaminants). Furthermore, it is essential to ensure the stability of the active ingredient, which involves evaluating whether it should be kept in solution or subjected to a drying process.

The valorization of waste from the meat industry is surrounded by many uncertainties, but in this sea of questions, CARTIF emerges, with its researchers studying and developing new processes for the treatment of these by-products, generating new knowledge and finding viable and sustainable technological solutions to these challenges, thereby offering added value to the meat industry.

CARTIF is firmly committed to this line of research, supporting companies in the meat sector in valorizing all their waste, including slurry, for transformation into various products — whether food, energy (such as renewable gases), or even agronomic products (such as organic fertilizers).

As we have seen, it is not only the pig from which everything can be used — even, as the saying goes, “its very walk.”


Pedro Acebes. Researcher at Agrifood and Processes Division


Sources

  1. https://www.nedgia.es/blog-gas-natural/vacas-contaminacion-metano/
  2. https://aguasindustriales.es/origen-y-composicion-de-las-aguas-residuales-en-mataderos/
  3. https://joaquimmunoz.com/alimentos-que-ayudan-a-la-produccion-de-colageno-en-la-piel/
  4. https://www.academianutricionydietetica.org/nutricion-deportiva/colageno/
  5. https://www.anamarialajusticiabolivia.com/osteoporosis-y-falta-de-colageno/
  6. https://www.agrodigital.com/2025/03/06/coste-produccion-leche-pais-vasco-2025/
  7. Informe trimestral de indicadores económicos marzo 2025. Sector vacuno de carne. Ministerio de Agricultura, pesca y alimentación. Gobierno de España.
  8. Área de precios. Informe semanal de coyuntura. Precios Coyunturales. Semana 5-2025 del 27 de enero al 2 de febrero. Subsecretaría Subdirección general de análisis, coordinación y estadística.
  9. Plan territorial de Ordenación de residuos de Tenerife. Residuos de mataderos, decomisos, subproductos cárnicos y animales muestras.
  10. Universidad Nacional del Nordeste Comunicaciones Científicas y Tecnológicas 2003. Cedrés, José F.
  11. https://mecanova.eu/desfibrinador-sangre
  12. https://mecanova.eu/por-que-es-importante-el-tratamiento-de-subproductos-en-un-matadero
Climate change and the urban heat island effect: How it affect us?

Climate change and the urban heat island effect: How it affect us?

When summer arrives and temperatures starts to increase, is frequent making the same question: why in the city center temperatures are higher than in an edification area in a rural environment?

The answer is simple: is due to the urban heat island effect.

Urban heat island effect is a local climatic phenomenon that causes the built environment to exhibit significantly higher temperatures than the surrounding areas. This effect is especially intensified at night and during the hottest times of the year, such as summer. The occurence of this phenomenon generates negative effects on both the health and quality of life of city dwellers, but also has a considerable impact on vegetation and the urban environment in general, contributing significantly to increasing the effects of climate change.



The origin of the urban heat island lies in the characteristics of the built environment itself. Materials such as asphalt, concrete and brick absorb radiation and retain heat during the day and release it slowly at night, preventing temperature regulation. This problem is often exarcebated when urban vegetation is reduced or scarce, when the design and orientation of streets limits air circulation and therefore the evacuation of heat accumulated during the day and the existence of anthropogenic emission sources, i.e., heat from vehicles, industries and air conditioning systems. All this contributes to the fact that, on average, the temperature in the city centre can be several degrees higher than in its peryphery or in rural environments.


Firstly, it has a significant impact on health, since high temperatures can cause general malaise, respiratory problems, sunstroke, dehydration, fatigue and even increased mortality due to heat stroke1. Secondly, there is the need for higher energy consumption due to cooling requirements, which is often associated with higher electricity prices. Thirdly, the urban heat island contributes to a worsening of air quality, aggravating the greenhouse effect problem. Finally, the economic impact it causes should be highlighted, as it can double the losses predicted by climate change.


Fundamentally, strategies such as the increase in plant surfaces and bodies of water (green and blue infrastructure), where the planting of trees and the creation of urban parks to help regulate the temperature of the environment, or green roofs and vertical gardens that cover buildings with vegetation to improve thermal insulation and reduce surface temperature, are of particular importance. Other strategies include the use of reflective materials (high albedo) that reflect sunlight instead of absorbing it, thus contributing significantly to reducing heat accumulation. However, one of the most efficient measures is proper urban planning through strategies that integrate climatic conditions into the design of the built environment, such as the promotion of a balanced density to ensure energy efficiency, access to services and open spaces without generating thermal overcrowding, the promotion of streets and public spaces aligned with the prevailing winds, allowing natural ventilation while reducing the thermal canyon effect associated with narrow streets. Finally, it is also worth mentioning sustainable mobility strategies, whether through the design of walkable cities, with access to public transportation and non-motorized means, or the promotion of electric vehicles that help reduce the heat emitted by engines.

Although major urban transformations that can generate highly visible impacts of the urban heat island require decisions by governments in collaboration with urban planning experts, every citizen can contribute with his or her small grain of sand to reduce the impact of the urban heat island. Small actions such as planting trees in yards and gardens, opting for light-colored paint for roofs and facades of houses, reducing energy consumption by regulating the thermal comfort of the home, using more public transport, walking or cycling can all make a significant contribution to reducing the impact of the urban heat island. All these measures can make a significant contribution to reducing the heat accumulated in the urban environment. Joint action that integrates small individual actions and large collective initiatives can be presented as the most efficient way to mitigate the urban heat island, which is considered one of the most important challenges of modern urbanization.

From CARTIF, we work to help the different public administrations in the development of solutions, plans and strategies for adaptation to climate change and its effects. It is worth mentioning the project in which we work together with GEOCYL Consultoría S.L. and the Natural Heritage Foundation of Castilla y León (CENCYL_ISLACALOR) in which we have worked on the quantification of the urban heat island effect in three Spanish cities (Valladolid, Salamanca and Ciudad Rodrigo) and five Portuguese cities (Almeida, Aveiro, Coimbra, Guarda and Viseu) of the CENCYL network, in which we also evaluated the impact caused by the increase in temperatures and defined relevant indicators for monitoring. For this purpose, Sentinel 2 and Sentinel 3 images have been used to define high resolution maps (10 meters) for daytime and nighttime surface temperature, which have been integrated into a multi-criteria decision analysis to define in detail the areas with the highest thermal load at city level. In addition, in the CLIMRES and INHERIT projects, we are working on the development of climate services to help reduce the effects of rising temperatures on the building sector and heritage, respectively.


1 In 2022 natural disasters in Spain caused 45 deaths, 45% of which were caused by high temperatures. (Source: Aon Spain Foundation based on data from the Ministry of the Interior (2023))