How does the term “metal-eco-additive manufacturing” sound?

How does the term “metal-eco-additive manufacturing” sound?

The term eco-design is rather known nowadays, but you’ve probably heard little about eco-manufacturing, especially since it’s not a term widely recognized in technical or academic literature. However, it is a concept that has recently started to be used to describe manufacturing practices that centrally incorporate environmental aspects. Well, I’ll go even further, and try to explain what “metal-eco-additive manufacturing” is, a term I just invented to title this.

Forty years ago, Charles Hull’s invention of stereolithography (SLA) gave rise to what we now know as 3D printing – or additive manufacturing. Going one step further, the concept of metal 3D printing emerged after decades of development and experimentation, though its ideation can be attributed to Carl Deckard, a pioneer in Selective Laser Sintering (SLS) about 30 years ago at the University of Texas. Far from its industrial application at the time, its development went hand in hand with advances in new materials and high-power lasers in the 2000s. Although many have heard of processes for metal 3D printing, such as Selective Laser Melting (SLM) or Electron Beam Melting (EBM), it’s worth noting that the technology took 10 more years to reach large-scale industrial production – not just prototypes, as was done during the development phase for sectors like aerospace, automotive, or medical (which had the money for such “toys”).

Over the past 15 years, metal 3D printing processes have significantly improved (in precision, resolution, speed, physical properties, quality control, etc.), largely due to the emergence of new materials and their characteristics. On the other hand, methodologies have been created to analyze the efficiency of manufacturing processes themselves, parametric control, automation, and robotics, which directly impact costs, thus enabling the expansion of metal 3D printing applications to other sectors. Currently, these enhanced processes include, for example, Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and metal Binder Jetting.

Well, the thing with additive manufacturing is like any technological process – progress is unstoppable: we don’t make airplanes the same way we did 120 years ago, right? 120 years ago, flying was already a reality (12 seconds and 36.5 meters), but I doubt we would agree to define “flying” the way the Wright brothers did in 1903. Their goal was “simply” to fly and survive. I don’t think they could have imagined that their scientific curiosity would become a key pillar of the global economy, nor did they think about 600-passenger airplanes, certifications governing the industry, or the pervasive existence of spaces for takeoff and landing.

In the same way, Carl Deckard, beyond his scientific interest in mechanical engineering, probably didn’t envision changing the world with his invention. However, just as air transport did, the additive manufacturing of metal parts has had, has, and will continue to have a massive impact globally. We now have new rules of the game and manufacturing possibilities for designs that were impossible until recently (generative designs), as their economic and environmental costs were prohibitive and bordering on madness. For example, if you don’t know how an airplane turbine is made (at least what it’s made from or how long it takes!!), you can’t appreciate the madness I’m referring to… and there are more and more airplanes every day!

Source: https://www.3d-grenzenlos.de/magazin/kurznachrichten/carl-robert-deckard-tod-gestorben-27555463/

Ecological awareness (so necessary today), the challenge ahead, and the transition to sustainability, will drive the circular economy in the use of metal additive manufacturing (or 3D printing). Or could it be additive manufacturing that will foster environmental sustainability? Or maybe a “virtuous loop” could be created where both fields will feed back into each other, by means of new concepts such as the one that I am coining here as metal-eco-additive manufacturing?

Simulation with lego of a metal-eco-additive-manufacturing laboratory. Author: Norberto Ibán Lorenzana

The thing is that everything evolves and new challenges arise; it won’t be enough just to design landing gears that fulfill their mission: apart from ensuring no one dies, they must be competitive. We must (and will be required to) know they were created in the most sustainable way possible and under circularity criteria. How? Well, looking towards the future, let’s imagine that the manufacturing conditions for a structurally responsible part could combine several manufacturing processes, not just one (machining) or the other (additive). Let’s also imagine that we could make parts that, although they could have inadequate finishes due to faster processes, these could be corrected in later treatments with techniques that require less effort. Or even, imagine that, if a part fails, we could refurbish it directly: that is, print what is missing on the same part so that the company using it can repair it in their own facilities. We wouldn’t have to throw away the part! Nor make a new one! We would avoid inventories of parts, storage, or transport of those spare parts, which is highly undesirable…

Well, the combination of additive manufacturing and circularity has a synergy point that will be researched and implemented over the next 4 years through a European project called DIAMETER, which involves more than 20 prestigious entities from 4 different continents. CARTIF is just one of these privileged entities that have already started working to build a bridge between metal additive manufacturing and the circular economy.

This bridge will be a framework where a series of metal parts used in critical cases across various production sectors will be analyzed, manufactured by different additive manufacturing processes. In DIAMETER, experimental physical results from the manufacturing processes will be compared with computational simulations of the parts in these processes to predict how the parts will respond to different process modifications. These responses (in terms of stress/deformation, among others) will provide mechanical knowledge about the parts and processes in terms of failures, waste, quality, or the need to integrate post-processing (hybrid manufacturing combining additive and subtractive). In short, a combination of possible scenarios and results that must be transformed into quantifiable outcomes under a sustainability approach to feed into an artificial intelligence system that will provide automated, optimal decisions on procedures and configurations in metal additive manufacturing of parts.

Well, yes, it’s as crazy as machining a 3m³ block of stainless steel on a 6-axis lathe for a week to get an airplane turbine or a hydraulic turbine. Or, seen another way, 500K€ for a week, with the possibility that, if there are errors, the turbine might need to be thrown away and start over from scratch.

But let’s take it step by step. The first thing will be to characterize these manufacturing processes, see how the parts are generated and whether they suffer deviations, inaccuracies, or analyze the quality of the surface itself. For this, artificial vision technology for geometric verification of parts during the manufacturing process will be used, which are technologies in which CARTIF has been working 30 years… and we have much ahead to go in the future!


Iñaki Fernández Pérez. PhD in Artificial Intelligence. Researcher at the Health and Wellnes area at CARTIF. He is currently collaborating on several projects that seek to apply cutting-edge technologies (AI, IoT, Edge Computing…).

Beyond strategy. Smart use of engineering expertise.

Beyond strategy. Smart use of engineering expertise.

“Divide et impera”, popular ancient Rome motto later attributted to the Roman emperor Julius Caesar. “Divide and dominate” or better known as “Divide and rule”, was the strategic foundation on which the Roman Empire was built (27 bC – 476 ac). Almost nothing. In line with the political and military relevance of this slogan, in the mathematical field, it gave its name to one of the eight classic heuristic strategies of problem solving, together with codification, organisation, experimentation, analogy, introduction of auxiliary elements, search for regularities and assumption of the solved problem.The others are proper notation, solution drawing, systematic experimentation, analogy, introduction of auxiliary elements, problem reformulation and way back.

The solution strategy we are talking about is based on breaking a problem into a set of smaller sub-problems, solving these sub-problems, and combining the solutions. This methodology is widely used in various scientific fields and that under different names, theorems, or methos, such as the method of integration by parts (integral calculus) or the principle of virtual jobs (strength of materials), has promoted the resolution of complex problems by converting them into multiple “easily” solvable problems.

If there is one thing that characterises the world of engineering, it is precisely this eagerness to transform problems. We have all heard the joke about how an engineer calculates the volume of a cow and how, compared to the functions of approximation to a surface and its subsequent integration that a mathematician would carry out or the performance of a physicist using Archimedes’ principle and putting the cow in a swimming pool, the engineer would give his solution by approximating the cow to a sphere.

In the field of structural engineering, the branch in charge of the design and calculation of structural elements and systems to ensure in advance an optimal structural response (safe, resistant and functional) applies the mechanics of continuous media, a super nice calculation model in the “academic” world whose application in real life is very “chunky”. That´s why we resor to the finite element method, another “divide and conquer” engineering glorification, where the strategy is to convert the continuous medium into a finite number of parts, “elements”, whose behaviour is specified by a finite number of parameters at certain characteristic points or “nodes”. This is commonly called “simulation”, although it should at least be called numerical.

Professionally, I work in this area to design “things” optimally. But when these things are sets of configurable elements or product catalogues, and we want to cover all the options to offer the best, we could talk about the need to develop dimensioning applications or system and product calculation configurators.

Well, after years working on these developments for different sectors, I can say, without fear, that dismembering a project among the different knowledge teams will be the iceberg that leaves us frozen. It seems logical to think that if we are talking about the development of a robust validation application of a configurable product, we need someone who knows the product perfectly, with all its variants and possibilities, its terminology, its meaning, its cost and even its soul, if I may say so. In the same way that we need, at this level of knowledge, someone capable of calculating and validating the product in resistant and functional terms and who knows how to transform, transcribe or visualise this numerical validation in a user-friendly platform. NO, prepare the lifeboats. A dose of reality difficult to digest for an engineer and staunch defender of multidisciplinary projects like me and of breaking down problems. NOT EXACTYL, get lifeboats ready. A dose of reality difficult to admit for an engineer staunch defender of multidisciplinary projects.

Professional experience, with blood, sweat and tears included, has improved our conception of strategy, avoiding sectorial strategies that push the global objective, and ultimately the product, to the background. And to understand this, there is nothing better than the well known expression “cobbler to your shoes”. Do you know what I’m talking about, not yet?

However the presence of different team members’ roles in this kind of work, make it impossible to detect errors or incoherencies derived from lack of conception and lack of understanding cooperation between professionals. It is unavoidable. Architects and engineers do not speak on the same scale, for example. In addition sectoral strategies relegate the functions of the “expert of the product” to setting the norms, rules or ranges of consideration. Which seems quite illogical since the expert is separated from the course of the project. The question is how do we detect failures? and when? it may be even more important. Everything points to final report. So we work such as Titanic’s valiant musicians and we’ll see how the ocean of corrections treats us. I’m talking about that ocean like a succession of final versions succession in which we will be submerged by unforeseen failures and with the corresponding increasing final workload. Now we do know what we’re talking about, don’t we?  

All this, without going into responsibilities which it have also been diluted. To blame are those who…If the person or persons responsible had bid me do so, I might have…

In this sense it is impossible to offer a service aimed to set up validation of configurable products application development if it is not a completely calculation project. So Turnkey project or I hope you are good swimmers.

However, trainings should also be conducted by people that are knowledgeable about the subject matter or the product, better even than costumer who can have been in the business for more than 30 years. We must become experts and think. It’s the only way to cope successfully such a service and that under a holistic approach where each part must be considered as one. So we avoid misinterpretations, unreasonable casuistic,   excessive computing (no scale-resolving simulations) and cannot effectively communicate (the customer never knows what he wants until you show it to them). I want to stand out with it the necessity of acting “in” the moment and “for” the future.

For those interested in these possibilities… where are we going to find someone who wants to learn? To find someone who wants to ask questions? To find someone who can improve the product and performance for your company, and have the ability to do so. I am talking about to use experimental or scientific techniques, with computational capacity and that you can also implement it on a platform so that its usability improves, for example, the competitiveness of the different technical and sales departments of other companies? Can you imagine pressing a button to get the weekly job of a technician?

Welcome to CARTIF

Infinite progress through finite elements

Infinite progress through finite elements

Computer-aided engineering tools (CAE) are more pervasive nowadays, and finite element analysis is having more impact than at any other time. In the past, CAE abilities have been used in specific fields with highly trained engineer teams and large computing facilities. For example, in the aeronautical industry the objective is, among others, to design more efficient airliners and the automotive industry must produce safer cars in case of accident.

Currently there are not field of science or engineering that has not been affected, and in some cases transformed, by computer simulation. Almost most manufacturing companies, regardless of the industry, can take advance of CAE abilities to simulate their process and improve their performance.

Sport industry show off this fact, for example, SPEEDO produced swimsuits including compressing effects for changing, in certain way, the shape of the swimmer’s body. Using this idea, SPEDOO designed suit able to achieve drag reductions in more than 15 per cent. In the JJ.OO. of Beijing, 94% of the medals were won by swimmers dressed with SPEDOO swimsuits (Michael Phelps, Mireia Belmonte …) and 23 out of 25 Olympic  records where beaten using this technology (according to data from FINA).

For an airliner or for an Olympic swimmer the engineering problem is essentially the same. There is a shape moving through a fluid and the drag must be minimized. That is, advanced engineering aerodynamic concepts also works in the textile industry. This example clearly defines the current situation of CAE abilities, where high technology is used to solve what we could define as trifling problems.

According to Lesa Roe, NASA Langley Research Center director, “Modeling and simulation is older than NASA”. Since the first models of digital calculators, computing machines evolved step by step and around year 2000 some experts believed that engineering simulation programmes had reached its peak due to the big improvement in abilities for the limited supply of high-level engineers.

However, the more powerful computers and the friendly integrated analysis environments have allowed companies to take advantage of the enormous potential of simulation programmes to make accurate predictions about natural phenomena, providing compelling evidence that we are really gaining in our understanding of how the products, processes and services can be optimized. Therefore, the almost endless engineering simulation techniques provide big growth opportunities, based on the current needs and the challenges that this poses.

As the saying goes, “Necessity is the mother of invention” CARTIF believes and works in endless possibilities to help customers develop better products and processes. I would like to stress in a particular application: the estimation of the static and buckling behaviour of very thin walled containers for food packaging.

Through simulation programmes we are able to detect weak points and design failures prior to manufacture, with consequent savings in time, material and money. Note that the containers are manufactured by plastic injection machines using expensive cast moulds.  During the analysis are taken into account parameters such as constitutive material properties (PET, HDPS, aluminium …), thickness, type of liquid or granular product to be content, etc. that define the containers and allows us to predict its performance, resulting in deformation curves under load, loads of collapse, tensions and stretching under certain loads which it may be subjected to circumstances of the production process, storage and transport conditions, including temperature, pressure and impact effects among others.

Beside theses services, being aware that “data is the new currency”, CARTIF is also working on structural health monitoring in civil structures. The aim of this work is predict when maintenance will be needed or what the expected behaviour of structure should be if the real system begins to deviate from the digital models’ behaviour. This idea can be reviewed in my previous post ‘When structures age’.

When structures age

When structures age

How to reduce structural conservation task expenses by implementing monitoring systems?

The structures are not everlasting. They are projected to play a role for a certain number of years. Thus, a wind turbine mast lifespan is about 20 years while in the case of a bridge it depends on the type and the material used. According to Guy Grattesat, metal bridge will have a lifespan of 40 years, 100 years for a reinforced concrete, between 15 and 20 years for those made of wood and about 200 years for masonry. Nevertheless, exceeding the life expectancy does not necessarily mean dismantling the structure. Generally, what we do is a more comprehensive monitoring effort and implementing conservation works if necessary.

Wire and accelerations sensor installation process inside the handrail

The European bridge stock is catching its lifespan and it is showing signs of fatigue. According to Eva Lantsoght, Professor of engineering at the University of San Francisco de Quito, “European bridges are old, but their replacement involves a great investment. Only in the Netherlands, there are about 3,000 bridges that could cause problems, being their refurbishment cost around one million euros each”. To mention another example, the first wind turbine parks (1984), whose technological emergence came in 2002 (according to the GWEC, Global Wind Statistics), have great needs for maintenance and the increase of these needs will have the same exponential curve, I can imagine, that its development has had in the past.

18 triaxial MENS accelerometers (sensors developed by CARTIF) installed equidistant along the span inside the handrail.

Having this background in mind, I would like to highlight the importance of implementing new maintenance strategies to reduce structural conservation task expenses. State-of-the-art monitoring systems, developed in recent years at increasingly low costs can be the solution. Usually in this type of structures, the procedure consists on the installation of a network of accelerometers to record the ambient vibration response of the structure. Using identification techniques, the modal characteristics can be estimated and be used to evaluate the structural integrity.

The idea is to know the structural behavior in operation conditions and to determine the valid range by controlling only a few parameters (frequency, mode and damping), being these parameters easy to evaluate and to record their trends along the time. Although the meaning of the word ‘monitoring’ refers to the capacity of the acquisition system to record certain values, it is also important to add the ability to process the data and to generate alarm codes, if it would be necessary.

In this aim, researchers require a deep understanding of the technical matter involved as well as a big experience in experimental techniques and data processing. OMA (Operational Modal Analysis) identification techniques are based just on the acceleration records but if some loading signal applied on the structure could be also record, additional information can be obtained using EMA (Experimental Modal Analysis “EMA”). Both approaches should gradually replace, or at least complement, the traditional visual inspections and static loading tests. Monitoring systems could be an emergent business for technology-based companies in cooperation with new maintenance standards or strategies by the infrastructure’s authorities.

In this regard, I can mention the success of low-cost monitoring system of Pedro Gómez Bosque footbridge (built in Valladolid) operated by CARTIF team since 2012. This stress-ribbon structure undergoes no linear effects. The collected data has been useful so far to understand the behavior under dense pedestrian loading, at different met conditions (summer or winter, strong wind…), etc. Analyzing this information, we know what it is normal and what is not, so we can establish an optimal operational range and determine when anomalies appear and why. In these terms, the structure is an ideal benchmark not only for structural monitoring but also for understanding mechanical problems, pedestrian loading and other engineering issues.