La palabra «Digitalización» es omnipresente hoy en día. Tanto se usa el término, que queda desgastado su significado cuando se le lleva a un terreno concreto. Traducirlo dando respuestas al cómo, con qué, para qué, e incluso por qué, para el caso concreto del Patrimonio Cultural no es tarea fácil, ni cerrada. Digitalización y Patrimonio es un romance cual Romeo y Julieta (por hacer un símil cultural), donde las respectivas familias miran el asunto con recelo, aun cuando está destinado a ser un matrimonio bien avenido, no de conveniencia.
Digitalización suena a tecnológico, a lo último. Patrimonio suena a arcaico, a lo viejo. Juntando lo uno con lo otro, y huyendo de definiciones formales (por otra parte, inexistentes), podemos decir que la digitalización es la incorporación de las tecnologías digitales (aquellas basadas en la electrónica, la óptica, la informática y las telecomunicaciones) a los productos, procesos y servicios que las organizaciones dedicadas al Patrimonio Cultural siguen y ofrecen para la investigación, protección, conservación, restauración y difusión del mismo.
La digitalización afecta al modo de afrontar el trabajo, al de actuar y a la propia organización, modificando su estructura y la forma de gestionarse. Esta alteración en la propia organización provoca un miedo atávico a perder la identidad gremial, artesana y sustentada en conocimiento profesional que caracteriza a las empresas del sector del Patrimonio Cultural, constituido por más de un 90% de PYMEs en la UE. Esta es la verdadera razón por la que son de las que más tardan en «digitalizarse». No se trata sólo de comprar, instalar y manejar ordenadores, programas informáticos y redes inalámbricas. El cambio es más profundo. No es una cuestión de forma, es una cuestión de fondo. Pero bien vale recordar que los talleres y personas que hoy aparecen en los libros de historia y de arte por las obras que nos han legado son precisamente famosos por haber innovado y empleado las mejores tecnologías de su tiempo.
¿Y qué tecnologías están en juego hoy en día para la Digitalización del Patrimonio Cultural? Sin ser exhaustivos y sabiendo que dejamos cosas en el tintero, las más demandadas se resumen a continuación:
Modelado y simulación multidimensional (incluyendo HBIM1 ): réplicas virtuales 3D exactas de bienes muebles e inmuebles; simulaciones mecánicas, eléctricas, acústicas, lumínicas y de cobertura de señal con softwares especializados; 4D (evolución en el tiempo). Es remarcable el modelado paramétrico HBIM para cumplir la Directiva 2014/24/EU y abordar a mayores las dimensiones 5D (costes); 6D (sostenibilidad y eficiencia energética) y 7D (mantenimiento).
Sensores, Internet de las cosas (del inglés IoT: Internet of Things) y 5G: dispositivos multipropósito para captura, combinación y comunicación de datos de todo tipo a través de Internet. El 5G permite hacer entre 10 y 20 veces más rápido el tráfico de esos datos con respecto al 4G que venimos manejando. Estas tecnologías se emplean típicamente en la monitorización estructural y la ambiental para evaluar el estado de los bienes.
Analítica de datos para conseguir información útil: aquí entran el cloud computing (computación en la nube, para tener toda la información archivada, accesible y que pueda ser consultada desde cualquier lugar y con cualquier dispositivo conectado a Internet); edge computing (computación local -en el eje-, para mejorar los tiempos de respuesta y ahorrar ancho de banda); big data (tratamiento masivo de datos estructurados y no estructurados -del orden de Petabytes: 1015 bytes-). La determinación de causas y efectos, junto a la predicción y la caracterización de comportamientos y preferencias (incluidos los flujos de visitantes) son ejemplos habituales.
Inteligencia artificial (IA): aprendizaje automático, donde contamos con machine learning (habilidad de aprender sin una programación específica para ello) y deep learning (aprendizaje basado en redes neuronales que imitan el funcionamiento elemental del cerebro humani). Un ejemplo es el Gigapixel, cuya única función es ampliar imágenes hasta ver detalles minúsculos gracias al procesamiento informático inteligente de fotografías de altísima calidad. Otro ejemplo es el reconocimiento automático de especies animales o símbolos en un grabado rupestre sobre el que a priori no se distingue nada.
Dinámica de sistemas y entropía informacional como formas de estudiar mecanismos adaptativos en sistemas complejos y cambiantes (como son todos aquellos que forjamos los humanos, que nos caracterizamos precisamente por crear arte y hacer cultura) para permitir establecer modelos de predicción ,de soporte a la decisión y de gestión.
Visión artificial: captura y procesamiento de imágenes por cámaras que operan en uno o varios rangos espectrales para ver más allá de nuestros ojos y a todas las escalas (desde el espacio con satélites COPERNICO, hasta el mundo microscópico): búsqueda de patrones, detección de plagas, humedades, cambios, irregularidades y falsificaciones, definición de autorías y técnicas artísticas, valoración de estado de conservación. Aplicada a la analítica de vídeo resulta muy eficaz para garantizar la seguridad de los bienes frente al robo, al vandalismo o el expolio.
Gemelos digitales: combinando alguno (o todos) los aspectos anteriores (modelado multidimensional, simulación, visión artificial, sensórica, IoT e IA) se da lugar a una réplica virtual con la que trabajar cómodamente de forma remota y multidisciplinar, que permite adelantarse a posibles problemas y experimentar sin correr riesgos antes de realizar cualquier intervención, ayudando a planificarlas de forma óptima. Puede aplicarse a bienes muebles, pero tiene especial significación en los inmuebles.
Audio y vídeo de alta definición: Hi-Res para audio y FullHD, 2K y 4K para vídeo son palabras que ya han entrado en nuestras vidas. Aluden a la alta calidad y durabilidad de los formatos de audio y vídeo que pueden utilizarse para el registro del patrimonio intangible o la divulgación del patrimonio en general
Realidad virtual (RV), aumentada (RA) y mixta (XR): para recrear espacios, decoraciones y configuraciones, pasadas o futuras, incluso adentrarse en las intervenciones planificadas mediante gafas especiales o sencillamente con nuestro teléfono móvil.
Ontología y semántica: para nombrar unívocamente y estructurar jerárquicamente los elementos constituyentes de bienes muebles, inmuebles y paisajes culturales de forma que sean comprensibles por especialistas y profanos con independencia de su lengua y bagaje cultural.
Interoperabilidad: para poder sincronizar datos, sistemas y procesos con independencia de su procedencia y su formato
Ciberseguridad: para defender de ataques maliciosos a los ordenadores, los servidores, los dispositivos móviles, los sistemas electrónicos, las redes y los datos. El blockchain permite evitar falsificaciones así como garantizar la autoría y el visado digital de proyectos.
Robotización e impresión 3D: los robots configurables (adaptables, embarcables y teleasistidos) permiten la construcción modular de elementos concretos in-situ. También permiten la automatización de procesos de inspección, limpieza, montaje, conservación y restauración en lugares peligrosos o de difícil acceso de forma rápida y precisa. Puede combinarse con la impresión 3D para sellados, aislamientos y filigranas en diferentes materiales y acabados. La impresión 3D por sí sóla permite la replicación funcional (total o parcial) a diferentes escalas para crear prototipos, piezas, maquetas y series de prueba.
Nanotecnología y nuevos materiales avanzados: la capacidad de procesamiento de los ordenadores y su combinación con el hardware de las máquinas permite el estudio y la manipulación de la materia en tamaños increíblemente pequeños (típicamente entre 1nm y 100 nm), dando lugar a una amplia gama de materiales y técnicas utilizables en conservación y restauración.
En marzo de 2021, la Comisión Europea publicó el informe que revisa y evalúa las acciones y los avances logrados en la UE en la implementación de la Recomendación (2011/711/UE) sobre digitalización, accesibilidad on-line y preservación digital del patrimonio cultural como uno de los principales instrumentos políticos en estas materias[2]. La transición ecológica y la transición digital son, de hecho, las claves del acuerdo sobre el tan nombrado Plan de Recuperación para Europa[3]. Los Estados miembros de la UE han coincidido en la necesidad de invertir más en la mejora de la conectividad y en tecnologías relacionadas para reforzar la transición digital y salir más fuertes de la pandemia de COVID-19, transformando nuestra economía y creando oportunidades y trabajos para esa Europa en la que queremos vivir. La ciudadanía ha demostrado durante el confinamiento que el Patrimonio Cultural en formato digital ha sido un auténtico bálsamo social, con museos y colecciones abiertos on-line las 24h. ¿Quién no ha visitado ya una exposición o un lugar emblemático de manera virtual?
Ahí queda eso… Es el momento… Y no caben soluciones generalistas. Aquí no se trata de producir miles de coches, piezas o envases al día. Todo lo contrario, cada empresa, cada proyecto, cada bien ha de considerarse como lo que es: algo único. Es como si entrásemos al supermercado y preguntásemos ‘¿qué hay para comer?’. La contestación, consonante con la perplejidad, podría ser: ‘hay desde precocinados a frescos, carnes, pescados, huevos, lácteos y dulces en todas sus variedades. Depende de sus gustos culinarios, del hambre y del tiempo que tenga, de sus necesidades nutricionales, del momento del día…’ En fin: llamen a la puerta de CARTIF y pregúntennos.
El famoso paradigma BIM (Building Information Modelling) está en boca de todos los profesionales de la Arquitectura, la Construcción y la Ingeniería, pero cuando se escarba un poco son muy poquitas las empresas que realmente lo aplican en sus rutinas diarias y, de hacerlo, distan mucho de ser homogéneas. BIM sigue siendo habitualmente confundido con paquetes de software específicos o con un tipo concreto de modelos digitales. Pero es mucho más que “lo último” en delineación por ordenador o que una potente herramienta de visualización 3D.
El paradigma BIM proporciona una caracterización digital de edificios e infraestructuras a lo largo de todo su ciclo de vida. Las informaciones que manejan diferentes profesionales pueden ser añadidas de forma local o remota en cualquier momento para tomar las decisiones apropiadas, y en el instante apropiado, en base a un modelo 3D que permite un análisis multidimensional: 4D (evolución en el tiempo); 5D (costes); 6D (sostenibilidad -incluyendo eficiencia energética-) y 7D (mantenimiento).
Aunque todavía son escasos los estudios sobre cómo el BIM y sus innovaciones están extendidos a lo largo y ancho de Europa, la Directiva 2014/24/EU impone el llamado “BIM nivel 2” en todos los proyectos sujetos a licitación pública. Esto de “nivel 2” implica que ha de seguirse un proceso colaborativo para dar lugar a modelos específicos útiles y a disciplinas que tienen que sumar esfuerzos para abordar problemas concretos. Estos modelos 3D han de constar de datos gráficos (aquellos representados mediante recursos visuales) y de datos semánticos (aquellos adicionales que son significativos), además de la documentación asociada (por ejemplo, un plan director). Toda esta información ha de ser recogida e intercambiada digitalmente usando formatos estandarizados no propietarios, como es el IFC (Industry Foundation Classes).
En consecuencia, el Patrimonio construido está sujeto también al BIM a efectos de documentación, conservación y difusión, pero el carácter distintivo, la complejidad intrínseca de los inmuebles y la sensibilidad que se requieren para satisfacer sus demandas, conducen inevitablemente a particularizaciones tecnológicas y metodológicas que han llevado a acuñar el concepto de Heritage-BIM (H-BIM, o BIM para Patrimonio). El propósito del H-BIM es proporcionar un modelo 3D que sirva de «contenedor» de toda la información que se va generando a lo largo del tiempo por diferentes procedimientos, por diferentes personas y por diferentes fuentes (tanto hardware como software). El modelo recogería así el carácter multidisciplinar del Patrimonio, muy alejado de la sencillez y modularidad de la construcción convencional, y sería muy útil para estudiar, valorar el estado de conservación y planificar las intervenciones en los bienes de forma rentable. Todo un reto para un sector donde la digitalización es una asignatura pendiente.
Tecnológicamente esto supone afrontar muchos desafíos, empezando por la cantidad mínima de datos gráficos y semánticos que serían adecuados para respaldar las actividades propias del sector. Dos de los más importantes son:
La combinación de datos 3D con diferentes tipos de imágenes (termografías, fotografías de alta resolución o multiespectrales) para dar lugar a un modelo H-BIM útil para el análisis pormenorizado
El texturizado fotorrealista de modelos 3D para tener una representación exacta de la realidad.
Ambos aspectos están siendo trabajados desde CARTIF para ayudar de forma decisiva a empresas, gestores y administraciones públicas en la digitalización del Patrimonio Cultural.
En posts anteriores de ‘Cuando los edificios históricos hablan’ (2) y (3) hemos descrito cómo afectan y cuál es la importancia de monitorizar tanto la temperatura y la humedad, como la iluminación (natural y artificial) en los edificios históricos. Para completar esta saga de aspectos perniciosos, le toca el turno ahora a los contaminantes.
Todos sabemos, y sufrimos, que la composición del aire se ve alterada por compuestos que provienen fundamentalmente del uso de combustibles fósiles (tráfico rodado y calefacciones) y de las actividades industriales. Estos compuestos contaminantes pueden desencadenar reacciones químicas en los materiales que componen los bienes culturales (sean estos muebles o inmuebles), degradándolos en mayor o menor medida. Los contaminantes con mayor concentración en el exterior son el dióxido de azufre (SO2), los óxidos de nitrógeno (NOX), el ozono (O3) y las partículas en suspensión (PM). Además de estos contaminantes que “viajan gratis” por el aire del exterior de los edificios, existen otros a tener en cuenta en el interior de los mismos, como los vapores de compuestos orgánicos (COV), los productos utilizados en las obras de conservación y restauración, e incluso, la propia presencia humana.
De nuevo tenemos que preguntarnos: ¿cuáles son sus efectos? Esta es una pequeña descripción de los principales:
El SO2 está relacionado con la combustión del carbón y con las actividades industriales y el transporte. Causa la corrosión de metales, la decoloración de pigmentos, el debilitamiento del cuero y la acidificación del papel.
Entre los NOx destacamos el dióxido de nitrógeno (NO2), que procede de la combustión en vehículos y en la industria. Sus efectos son la decoloración de pigmentos y la contribución a la degradación del papel y del cuero.
El famoso ozono (O3) está presente de forma natural en la estratosfera. Es bueno que así sea, porque nos protege de las radiaciones solares malignas, pero su presencia a nivel del suelo está vinculada al tráfico rodado y a la radiación solar intensa. Provoca la degradación de gomas naturales y la decoloración de pigmentos.
Las PM se caracterizan por su diámetro, distinguiéndose entre las partículas finas (PM 2,5: con diámetro igual o menor a 2,5 μm), y las partículas gruesas (PM 10: con diámetro entre 2,5 μm y 10 μm –te recuerdo que 1 μm es la millonésima parte de un metro-). Las finas inciden en la decoloración y suciedad de las superficies. Las gruesas contienen compuestos muy reactivos (por ej. los residuos de la combustión incompleta del tráfico rodado). El polvo entra en este apartado: aparte de su claro impacto estético (denota dejadez y falta de cuidado) puede llevar a deterioro químico, y puede servir de hábitat para los insectos (ya te pica algo, ¿a que sí?…)
En general, el estudio de la contaminación exterior se encuentra más desarrollado y legislado que la relativa a interiores. No obstante, en el ámbito del Patrimonio Cultural, el estudio de la calidad del aire interior es muy importante por las lógicas exigencias que plantea la conservación de los bienes. Siguiendo una vez más los criterios del IPCE, que dispone el Plan Nacional de Conservación Preventiva (PNCP), los parámetros de evaluación de los riesgos derivados de la contaminación a la que están expuestos los edificios históricos son:
Parámetros externos:
Medio donde se encuentra el bien cultural (rural, urbano, industrial, costero, etc.).
Fuentes contaminantes próximas, bien sean de origen antropogénico (procesos industriales y de transporte) o de origen natural (volcanes, incendios, agua marina, vida animal, vegetación, etc.).
Factores meteorológicos, como vientos y precipitaciones que influyen en la dispersión y deposición de los contaminantes.
Parámetros internos:
Fuentes de contaminación interior.
Calidad del aire exterior y ubicación del recinto cerrado en relación al exterior.
Estanqueidad del edificio, de sus compartimentaciones y mobiliario.
Distribución de los contaminantes por la circulación del aire.
Instalaciones de aire acondicionado, calefacción y ventilación existentes, así como su uso y mantenimiento.
Y los criterios que debemos tener en cuenta para la valoración del deterioro producido por los contaminantes son éstos:
El daño por la contaminación es acumulativo, por lo que hay que establecer límites muy bajos, que estarán marcados por la capacidad de detección de los aparatos disponibles.
El daño causado viene determinado por la dosis, es decir, la concentración del contaminante (en μg/m3 o partes por billón –ppb-) por el tiempo de exposición. Este tiempo de exposición se estima convenientemente para considerar su efecto global.
Tener presente la influencia mutua entre contaminación y otros factores que ya conoces, como la humedad y la iluminación.
En conclusión, la calidad del aire dentro y/o fuera del patrimonio construido define su conservación. Permíteme recordarte de nuevo que en CARTIF estamos para asesorarte, ayudarte y ofrecer soluciones a la medida de tus posibilidades. Puedes echar un vistazo a las webs de los proyectos: RESCATAME, SHCITY y EQUINOX. Llevamos más de 20 años innovando en el Patrimonio Cultural y Natural. ¡A tu servicio!
En dos post anteriores [ Cuando los Edificios históricos hablan (I) y (II) ] aparte de dejar clara la importancia que tiene la conservación del patrimonio construido y de relatar los factores ambientales que influyen en esa conservación, hemos ya tratado la temperatura y la humedad como los dos aspectos clave que deben vigilarse para garantizarla. De todas formas, y por si te habías olvidado, existen otros aspectos que también deben «monitorizarse» para evitar deterioros que deriven en tan costosas como largas restauraciones:
La iluminación (luz natural y artificial).
Los contaminantes.
En este blog nos vamos a meter con la iluminación, que afecta sobre todo a los bienes muebles que decoran o atesoran los edificios históricos. Sé paciente, los contaminantes les dejaremos para la próxima ( y última) entrega.
La iluminación puede ser de origen natural (procedente del sol) o artificial (procedente de fuentes eléctricas), ero independientemente de su origen es una radiación electromagnética que cubre tres rangos: infrarrojo (IR), visible (VIS) y ultravioleta (UV). Solemos denominar «luz» a la parte visible al ojo humano. La radiación UV posee una longitud de onda más pequeña que la visible y es la que tiene mayor energía asociada. Por su parte, la radiación IR tiene mayor longitud de onda que el visible y es menos energética. Tanto la radiación ultravioleta como la infrarroja no son necesarias para «ver», pero sí influyen en el deterioro de los materiales.
Cuando una obra es iluminada, bien sea un cuadro, una pintura, una policromía, un tapiz o un pergamino, todo el rango de radiación indicado (IR,VIS y UV) es absorbido por los materiales de los que está compuesta. Esta radiación lleva asociada una energía capaz de alterar y degradar la estructura molecular de muchos materiales y en especial los más «perecederos», como son los de origen orgánico (textiles, pigmentos, cuero y papel).
La componente UV, al ser la de mayor energía, es la que tiene mayor capacidad para alterar los materiales, desintegrándoles y debilitándoles, produciendo su amarilleamiento. La componente VIS es capaz de decolorar los pigmentos más sensibles. Por su parte, la componente IR, tiene un efecto de calentamiento que acelera ciertas reacciones químicas.
Si te das cuenta, parece que para los objetos que conservamos en museos, iglesias, ermitas, castillos,palacios, archivos y bibliotecas, lo más recomendable sería mantenerlos en penumbra. Sin embargo, ya sea para su estudio , para su conservación, y especialmente para su exhibición, se requiere cierta iluminación. Si guiendo los criterios del IPCE, que dipone el Plan Nacional de Conservación Preventiva (PNCP), los parámetros de evaluación de los riesgos derivados de la iluminación son estos:
Intensidad de las fuentes artificiales y naturales.
Tiempo de exposición a la iluminación del bien cultural.
Espectro (rango)de emisión de las fuentes de luz artificiales, conociendo si emiten en las franjas de radiación no visible.
Incidencia de la iluminación natural, cuál es su orientación respecto al bien, y si la radiación es directa o difusa.
Qué medidas de control de la iluminación existen.
A su vez, la valoración del daño producido por la iluminación debe tener en cuenta los siguientes aspectos:
Puesto que ese daño es acumulativo, debemos huir de los niveles de iluminación altos, pero manteniendo un nivel de compromiso para una visión adecuada. Por dar valores concretos, esto se traduce en 50 lux para los materiales más sensibles y 150-200 lux para los bienes culturales de sensibilidad media.
El daño causado viene determinado por la dosis de iluminación, es decir, la intensidad de iluminación durante el tiempo que está expuesta (lux/h). Así debemos tener claro que el daño en el caso de niveles de iluminación altos con exposiciones cortas sería el mismo que con niveles bajos y exposiciones más prolongadas.
El efecto degradativo de la iluminación depende también de otros factores del medio como la humedad y la contaminación del aire.
Por tanto, dónde colocamos nuestros bienes culturales, cómo les da la luz natural, y con qué tipo de lámparas les enfocamos, son aspectos vitales para su conservación (ver figura). En CARTIF ofrecemos asesoramiento y soluciones a medida, basadas en una experiencia contrastada de más de 20 años en investigación aplicada al Patrimonio Cultural.
En la primera parte de este post, ya describimos la importancia social y económica que tiene la conservación del patrimonio construido, y prometimos que entraríamos en más profundidad a describir los tres principales aspectos que deben vigilarse (en el argot técnico decimos “monitorizarse”) para garantizar esa conservación:
La temperatura y la humedad relativas
La iluminación (luz natural y artificial).
Los contaminantes.
Como lo prometido es deuda, en este post nos vamos a centrar en el primer punto, que nos hace vérnoslas con los más “malos” del lugar. La humedad relativa y la temperatura son muy dañinos en los efectos que pueden causar en los materiales de que están hechos los edificios históricos. Echando mano de la Física, la humedad relativa es un indicador muy útil sobre el contenido de vapor de agua en el aire, y, a su vez, la temperatura indica el nivel de energía cinética (movimiento, para entendernos) de las moléculas de ese aire.
Ambos parámetros varían en función de las condiciones meteorológicas locales, de las acciones del hombre en el medio y de las condiciones de conservación de los edificios históricos. Esto significa que vamos a tener una atmósfera que envuelve a esos inmuebles con una cantidad mayor o menor de vapor de agua a una temperatura determinada, influenciando definitivamente en la estabilidad físico-química de los materiales de que están construidos, o incluso, de que se componen los objetos que atesoran.
En este sentido, no es desdeñable el efecto que causamos las personas, tanto por nuestros cada vez más exigentes requerimientos de confort, como por el número de visitantes. Podemos influir en la humedad relativa y la temperatura de tal forma que se alcancen valores inadecuados. Los efectos de las personas se suman a los del clima local (más o menos húmedo o cálido), a los del lugar (estanqueidad y capacidad de ventilación), a los derivados de la proximidad de fuentes de calor (calefacciones, superficies de vidrio soleadas y sistemas de iluminación artificial antiguos) y de la proximidad de fuentes de frío (muros exteriores o sistemas de aire acondicionado), y también a fuentes de humedad (goteras, fugas e inundaciones).
El factor principal a controlar por el riesgo de deterioro directo que puede originar es la humedad. La cantidad de vapor de agua del aire da lugar a cambios dimensionales como la conocida dilatación y contracción de maderas, que puede desencadenar fracturas y grietas cuando se dan fuertes fluctuaciones. Además, los valores extremos de humedad relativa provocan el reblandecimiento o la desecación de materiales orgánicos como los adhesivos y aglutinantes. Pero también afecta a la estabilidad de materiales inorgánicos, como metales, acelerando los procesos de corrosión, sobre todo en presencia de sales. En condiciones de mala ventilación y suciedad, la alta humedad relativa originará la proliferación de seres vivos causantes de biodeterioro (desde microrganismos hasta roedores… ¡un asco!), e incluso problemas para nuestra salud como vemos en la imagen.
Por su parte la temperatura acelera las reacciones químicas y favorece la actividad biológica. Contribuye al reblandecimiento de ceras y adhesivos y a la pérdida de adherencia entre distintos materiales, como los esmaltes.
Quizá leer todo esto provoque un poco de desazón (y hasta picores…) Entonces, ¿qué podemos hacer para que estos efectos adversos no ocurran? La respuesta es tan sencilla como razonable: evitar los niveles demasiado altos o demasiados bajos de temperatura y humedad relativa, garantizando la mayor estabilidad posible.
Siguiendo las indicaciones del IPCE (Instituto de Patrimonio Cultural de España, dependiente del Ministerio de Cultura) que dispone el Plan Nacional de Conservación Preventiva (PNCP), para la evaluación de riesgos derivados de los factores microclimáticos de que venimos hablando deben vigilarse tres aspectos:
Los niveles extremos de humedad relativa y temperatura del aire.
La magnitud y velocidad de las fluctuaciones de humedad relativa y temperatura del aire.
La proximidad de focos de humedad y de fuentes de emisión de calor y frío.
Toda una gama de sensores está disponible en el mercado para monitorizar la temperatura y la humedad, bien de forma continua, bien de forma puntual (ver imagen). Eso sí, hace falta saber tratar, interpretar e integrar convenientemente los datos que proporcionan.
Lo que no es tan frecuente es usar métodos alternativos para evaluar los efectos de la humedad sobre los materiales del patrimonio construido. Incluso antes de que aparezcan y sea peor el remedio que la enfermedad. CARTIF es pionero en la utilización de escáneres láser para hacer esa evaluación.
Un reciente artículo publicado en la prestigiosa revista Studies in Conservation y los desarrollos que viene realizando para el proyecto de investigación Europeo INCEPTION muestran que a la vez que se documenta en 3D un edificio histórico, se puede saber el nivel de humedad presente en un tipo de material concreto. Todo un 2×1 a tener en cuenta en los tiempos que corren de gasto mínimo en conservación. El claustro de la Catedral de Ciudad Rodrigo (Salamanca) ha sido el lugar para los ensayos.