En un mundo que busca reducir su huella de carbono y avanzar hacia una economía circular, los microorganismos anaerobios emergen como protagonistas en la lucha contra el cambio climático. Estos organismos, que prosperan en ambientes sin oxígeno, han sido empleados durante décadas en procesos como la digestión anaerobia para el tratamiento de residuos y la producción de biogás. Sin embargo, su potencial va mucho más allá. Gracias a los avances en biotecnología, los microorganismos anaerobios se perfilan como herramientas clave para la descarbonización industrial mediante procesos innovadores como la fermentación de gases (gas fermentation), en los que pueden transformar el CO2 o el CO en productos de alto valor añadido.

Las industrias pesadas, como la siderurgia, el cemento y la petroquímica, generan grandes cantidades de CO2 y CO como subproducto de sus procesos. Tradicionalmente, estos gases han sido liberado a la atmósfera, contribuyendo al calentamiento global. No obstante, la biología sintética y la biotecnología han abierto una nueva vía para aprovechar estas emisiones y convertirlas en productos valiosos mediante la acción de microorganismos anaerobios especializados.

Ciertas bacterias anaerobias, como las del género Clostridium, Moorella y Acetobacterium, pueden utilizar el CO2 y el CO como fuente de carbono y transformarlos en compuestos orgánicos mediante rutas metabólicas especializadas. Este proceso, conocido como fermentación de gases, facilita la conversión de emisiones industriales en productos químicos renovables, combustibles y biomateriales, promoviendo una economía más sostenible. Por ejemplo, Acetobacterium woodii y Moorella thermoacetica son bacterias acetogénicas capaz de convertir CO2 en ácido acético, un insumo clave para la industria química y alimentaria, mientras que especies como Clostridium ljundahlii pueden producir acetato y etanol, lo que las convierte en una alternativa viable para la generación de biocombustibles y otros productos de interés industrial.

Imagen de Clostridium autoethanogenum creciendo a partir de CO2/CO como fuente de C.
Imagen de Clostridium autoethanogenum creciendo a partir de CO2/CO como fuente de C.

Además de etanol o ácido acético, las bacterias anaerobias son capaces de generar otros compuestos de interés como por ejemplo butanol, acetona y otros ácidos orgánicos como fórmico, propiónico o butírico. Estos productos son clave en la fabricación de plásticos, solventes y otros compuestos químicos con alta demanda industrial.

Los biopolímeros y bioplásticos representan otra vía prometedora. Cupriavidus necator puede transformar el CO2 en precursores de bioplásticos como polihidroxialcanoato (PHA) y polihidroxibutirato (PHB), materiales biodegradables que constituyen una alternativa sostenible a los plásticos convencionales derivados del petróleo.

Finalmente, las proteínas unicelulares obtenidas a partir de CO2 pueden ser producidas por diversas especies de hidrogenotrofos, que convierten gases como el CO2 e hidrógeno en biomasa rica en proteínas. Estas proteínas microbianas pueden utilizarse como una fuente alternativa para la alimentación animal e incluso humana, contribuyendo a la seguridad alimentaria global y reduciendo la presión sobre los recursos agrícolas tradicionales.



El aprovechamiento de microorganismos anaerobios para la conversión de CO2 en productos de valor ofrece múltiples ventajas. En primer lugar, reduce las emisiones industriales, mitigando el impacto ambiental de sectores altamente contaminantes. Además, permite una producción sostenible de compuestos químicos y combustibles sin depender de recursos fósiles o cultivos agrícolas.

Actualmente, ya existen procesos de fermentación de gases a nivel industrial que están demostrando su viabilidad. Por ejemplo, la empresa LanzaTech ha desarrollado tecnologías basadas en bacterias acetogénicas para transformar CO2 y CO en etanol y otros productos químicos, utilizando gases residuales de la industria siderúrgica. Esta tecnología ha sido implementada en países como China y Bélgica, donde plantas industriales operativas han logrado convertir emisiones en biocombustibles y materiales renovables. Otro caso es la empresa Carbon Recycling International (CRI), que emplea microorganismos en Islandia para convertir CO2 en metanol, un compuesto clave en la industria química y de transporte.

Sin embargo, a pesar de su enorme potencial, la implementación de la fermentación de gases a escala industrial enfrenta desafíos técnicos y económicos. Entre ellos, se encuentran la optimización de los bioprocesos para mejorar la eficiencia de conversión del CO2, la reducción de costos operativos y el desarrollo de bioreactores adecuados para la producción a gran escala. Además, es necesario avanzar en el diseño de microorganismos modificados genéticamente que puedan maximizar la conversión de CO2 en productos específicos de interés industrial.

El área de Biotecnología y Química Sostenible de CARTIF ha desarrollado durante los últimos años una intensa actividad investigadora en torno a la tecnología de fermentación de gases y el manejo de microorganismos anaerobios. Concretamente, la ejecución de proyectos de I+D como BioSFerA o CO2SMOS nos ha permitido poder posicionarnos en el panorama europeo como una entidad capaz de trabajar de forma exitosa con esta peculiar clase de microorganismos y poder optimizar específicamente sus condiciones de crecimiento en biorreactor presurizado, para incrementar rendimientos de producción de diversos compuestos como acido acético, etanol o 2,3-butanodiol. 

A medida que la investigación y el desarrollo continúen avanzando, estos microorganismos desempeñarán un papel aún más fundamental en la transición hacia una industria más sostenible y una sociedad con menor impacto ambiental.

José María Sanz Martín
Share This