La revolución de las moléculas verdes
En la transición hacia un mundo más sostenible, el hidrógeno verde ha surgido como un recurso esencial para descarbonizar sectores clave como la industria y el transporte. En 2024, la Unión Europea y otros países han redoblado sus esfuerzos con inversiones históricas para construir infraestructura y fomentar la producción de hidrógeno renovable, que será crucial para cumplir los objetivos climáticos. Esta inversión pone de relieve el papel fundamental del hidrógeno verde en la lucha contra el cambio climático y la creación de una economía libre de carbono.
El hidrógeno verde, a diferencia del convencional, se genera a partir tecnologías basadas en energías renovables (por ejemplo, a partir de celdas electrolíticas combinadas con energías renovables, como la eólica o la solar) sin emitir gases contaminantes. Este proceso lo convierte en una opción limpia y segura para reducir las emisiones globales. Sin embargo, su adopción masiva depende del éxito de desafíos en cuanto a transporte y almacenamiento, y aquí es donde las moléculas portadoras de hidrógeno tienen un rol esencial.
Moléculas portadoras de hidrógeno o «moléculas verdes»: la clave del desarrollo del sector del H2 verde.
El hidrógeno en su estado puro es difícil de almacenar y transportar debido a su baja densidad energética y a que necesita condiciones especiales de presión y temperatura. Las moléculas portadoras, como el metanol, el amoníaco y el ácido fórmico, permiten almacenar el hidrógeno de forma segura y estable, facilitando su manejo y transporte. Estas moléculas actúan como “embalajes” del hidrógeno, que puede liberarse en el punto de consumo sin complicaciones logísticas.
El metanol, un portador versátil, se obtiene combinando hidrógeno verde con CO₂ capturado, y puede reconvertirse en hidrógeno de forma práctica en el punto de uso. El amoníaco es otro portador prometedor, con una alta densidad de hidrógeno y una infraestructura de transporte ya existente, lo que lo hace ideal para aplicaciones industriales de gran escala. El ácido fórmico, menos conocido, es fácil de manejar y una opción excelente para aplicaciones más pequeñas, como pilas de combustible en vehículos ligeros.
Aplicaciones de H2 y sus derivados en el transporte e industria
La flexibilidad de estas moléculas portadoras abre un amplio abanico de aplicaciones. En el sector del transporte, pueden usarse en camiones, trenes y autobuses, permitiendo una movilidad sin emisiones de carbono. Este año hemos visto cómo los primeros autobuses de hidrógeno operan en Alemania, y Japón ha lanzado trenes de hidrógeno, mostrando el potencial de este recurso en el transporte público sostenible. Las moléculas portadoras hacen que el almacenamiento y recarga de hidrógeno verde sea más práctico, ayudando a reducir la dependencia de combustibles fósiles en largas distancias.
En la industria, el hidrógeno verde y sus portadores son alternativas viables para reemplazar el carbón en procesos de alta temperatura, como la producción de acero, y como materia prima en la industria química, donde el hidrógeno verde sustituye al hidrógeno gris en la producción de amoníaco y metanol, productos químicos esenciales en la fabricación de fertilizantes y plásticos.
Además, el hidrógeno verde también es clave en el almacenamiento de energía. Con el crecimiento de energías renovables, como la solar y la eólica, se necesitan métodos eficientes para almacenar el exceso de energía y liberarlo cuando es necesario. Los excedentes de energía renovable pueden convertirse en hidrógeno verde y almacenarse en portadores como el metanol o el amoníaco, que después pueden reconvertirse en energía cuando la demanda es alta o la generación renovable baja. Esto ayuda a una red eléctrica más estable y sostenible, y reduce la intermitencia de fuentes renovables.
Los desafíos y oportunidades que nos trae el futuro inmediato del H2 verde y sus «moléculas» derivadas
A pesar de su potencial, el hidrógeno verde todavía enfrenta desafíos importantes. Uno de ellos es el costo de producción, que sigue siendo elevado en comparación con los combustibles fósiles. Sin embargo, el avance tecnológico y el apoyo gubernamental están permitiendo reducir estos costos, con expectativas de que en los próximos años el hidrógeno verde sea más accesible. Además, se necesitan inversiones en infraestructura de distribución y estaciones de recarga para llevar el hidrógeno verde a gran escala, permitiendo su uso en aplicaciones industriales y de transporte en todo el mundo.
El Área de Biotecnología y Química Sostenible de CARTIF también estamos desarrollando tecnologías para hacer que la producción de hidrógeno verde sea más eficiente y económica, reduciendo los costos de la electrólisis y mejorando los materiales para el almacenamiento seguro del hidrógeno en moléculas portadoras. Estos avances acercan estas tecnologías a una escala comercial, haciendo que el hidrógeno verde sea competitivo y accesible en un mercado energético que exige cada vez más sostenibilidad. Mediante proyectos como CATCO2NVERS y H2METAMO, trabajamos en la captura de CO₂ para su conversión en metanol verde, un portador de hidrógeno de alto valor añadido. Estos proyectos no solo investigan cómo el metanol y el amoníaco pueden facilitar el almacenamiento y transporte del hidrógeno, sino que también exploran el potencial de estos portadores para su uso directo en aplicaciones industriales y energéticas.
«En CARTIF, somos pioneros en hidrógeno verde y su almacenamiento químico mediante en forma de moléculas verdes y estamos comprometidos con el avance del hidrógeno verde y sus portadores como solución para una economía baja en carbono»
En resumen, el hidrógeno verde y sus derivados están comenzando a transformar la forma en que pensamos sobre la energía. Este recurso representa una oportunidad única para reducir las emisiones de carbono y proporcionar energía limpia en diversas industrias y aplicaciones. En CARTIF, creemos que el hidrógeno verde es el camino hacia un futuro sostenible y estamos comprometidos con desarrollar tecnologías que permitan su adopción masiva para generar un impacto positivo en el planeta.
Co-autor
David Díez Rodriguez. Investigador del área de Biotecnología y Química Sostenible