La revolución de las moléculas verdes

La revolución de las moléculas verdes

En la transición hacia un mundo más sostenible, el hidrógeno verde ha surgido como un recurso esencial para descarbonizar sectores clave como la industria y el transporte. En 2024, la Unión Europea y otros países han redoblado sus esfuerzos con inversiones históricas para construir infraestructura y fomentar la producción de hidrógeno renovable, que será crucial para cumplir los objetivos climáticos. Esta inversión pone de relieve el papel fundamental del hidrógeno verde en la lucha contra el cambio climático y la creación de una economía libre de carbono.

El hidrógeno verde, a diferencia del convencional, se genera a partir tecnologías basadas en energías renovables (por ejemplo, a partir de celdas electrolíticas combinadas con energías renovables, como la eólica o la solar) sin emitir gases contaminantes. Este proceso lo convierte en una opción limpia y segura para reducir las emisiones globales. Sin embargo, su adopción masiva depende del éxito de desafíos en cuanto a transporte y almacenamiento, y aquí es donde las moléculas portadoras de hidrógeno tienen un rol esencial.

El hidrógeno en su estado puro es difícil de almacenar y transportar debido a su baja densidad energética y a que necesita condiciones especiales de presión y temperatura. Las moléculas portadoras, como el metanol, el amoníaco y el ácido fórmico, permiten almacenar el hidrógeno de forma segura y estable, facilitando su manejo y transporte. Estas moléculas actúan como “embalajes” del hidrógeno, que puede liberarse en el punto de consumo sin complicaciones logísticas.

El metanol, un portador versátil, se obtiene combinando hidrógeno verde con CO₂ capturado, y puede reconvertirse en hidrógeno de forma práctica en el punto de uso. El amoníaco es otro portador prometedor, con una alta densidad de hidrógeno y una infraestructura de transporte ya existente, lo que lo hace ideal para aplicaciones industriales de gran escala. El ácido fórmico, menos conocido, es fácil de manejar y una opción excelente para aplicaciones más pequeñas, como pilas de combustible en vehículos ligeros.

La flexibilidad de estas moléculas portadoras abre un amplio abanico de aplicaciones. En el sector del transporte, pueden usarse en camiones, trenes y autobuses, permitiendo una movilidad sin emisiones de carbono. Este año hemos visto cómo los primeros autobuses de hidrógeno operan en Alemania, y Japón ha lanzado trenes de hidrógeno, mostrando el potencial de este recurso en el transporte público sostenible. Las moléculas portadoras hacen que el almacenamiento y recarga de hidrógeno verde sea más práctico, ayudando a reducir la dependencia de combustibles fósiles en largas distancias.

Fuente: Freepik.es

En la industria, el hidrógeno verde y sus portadores son alternativas viables para reemplazar el carbón en procesos de alta temperatura, como la producción de acero, y como materia prima en la industria química, donde el hidrógeno verde sustituye al hidrógeno gris en la producción de amoníaco y metanol, productos químicos esenciales en la fabricación de fertilizantes y plásticos.

Además, el hidrógeno verde también es clave en el almacenamiento de energía. Con el crecimiento de energías renovables, como la solar y la eólica, se necesitan métodos eficientes para almacenar el exceso de energía y liberarlo cuando es necesario. Los excedentes de energía renovable pueden convertirse en hidrógeno verde y almacenarse en portadores como el metanol o el amoníaco, que después pueden reconvertirse en energía cuando la demanda es alta o la generación renovable baja. Esto ayuda a una red eléctrica más estable y sostenible, y reduce la intermitencia de fuentes renovables.

A pesar de su potencial, el hidrógeno verde todavía enfrenta desafíos importantes. Uno de ellos es el costo de producción, que sigue siendo elevado en comparación con los combustibles fósiles. Sin embargo, el avance tecnológico y el apoyo gubernamental están permitiendo reducir estos costos, con expectativas de que en los próximos años el hidrógeno verde sea más accesible. Además, se necesitan inversiones en infraestructura de distribución y estaciones de recarga para llevar el hidrógeno verde a gran escala, permitiendo su uso en aplicaciones industriales y de transporte en todo el mundo.

El Área de Biotecnología y Química Sostenible de CARTIF también estamos desarrollando tecnologías para hacer que la producción de hidrógeno verde sea más eficiente y económica, reduciendo los costos de la electrólisis y mejorando los materiales para el almacenamiento seguro del hidrógeno en moléculas portadoras. Estos avances acercan estas tecnologías a una escala comercial, haciendo que el hidrógeno verde sea competitivo y accesible en un mercado energético que exige cada vez más sostenibilidad. Mediante proyectos como CATCO2NVERS y H2METAMO, trabajamos en la captura de CO₂ para su conversión en metanol verde, un portador de hidrógeno de alto valor añadido. Estos proyectos no solo investigan cómo el metanol y el amoníaco pueden facilitar el almacenamiento y transporte del hidrógeno, sino que también exploran el potencial de estos portadores para su uso directo en aplicaciones industriales y energéticas.

«En CARTIF, somos pioneros en hidrógeno verde y su almacenamiento químico mediante en forma de moléculas verdes y estamos comprometidos con el avance del hidrógeno verde y sus portadores como solución para una economía baja en carbono»

En resumen, el hidrógeno verde y sus derivados están comenzando a transformar la forma en que pensamos sobre la energía. Este recurso representa una oportunidad única para reducir las emisiones de carbono y proporcionar energía limpia en diversas industrias y aplicaciones. En CARTIF, creemos que el hidrógeno verde es el camino hacia un futuro sostenible y estamos comprometidos con desarrollar tecnologías que permitan su adopción masiva para generar un impacto positivo en el planeta.


David Díez Rodriguez. Investigador del área de Biotecnología y Química Sostenible

El CO2 biogénico: retos y oportunidades para un futuro sostenible

El CO2 biogénico: retos y oportunidades para un futuro sostenible

En la lucha contra el cambio climático, la innovación tecnológica se presenta como uno de nuestros aliados más poderosos. Una de las áreas más prometedoras y desafiantes en este sentido es la transformación del dióxido de carbono (CO2), un gas de efecto invernadero prevalente, en materias primas útiles para la industria y el transporte. Este enfoque no solo promete mitigar las emisiones de gases efecto invernadero, sino que también abre la puerta a una economía circular donde los residuos se convierten en recursos.

El CO2 es el principal contribuyente al calentamiento global, producto que surge principalmente de la quema de combustibles fósiles y la deforestación. La concentración de CO2 en la atmósfera ha alcanzado niveles sin precedentes, lo que hace imperativo encontrar maneras efectivas de reducir estas emisiones. La captura y utilización de CO2 se presenta como una estrategia prometedora, transformando este gas en productos valiosos, lo cual podría revolucionar sectores como el transporte y la manufactura, reduciendo significativamente nuestra huella de carbono.

La transformación del CO2 en materias primas implica varios métodos, entre los que destacan la electroquímica, la catálisis y la biotecnología. Estas tecnologías buscan convertir el CO2 en combustibles, plásticos, materiales de construcción y otros químicos industriales, que básicamente se clasifican en tres tipos:

  1. Biotecnología: basadas en procesos biológicos de fermentación con sustrato en fase gas-líquido. Utiliza organismos modificados genéticamente, como microalgas y bacterias, para absorber CO2 y convertirlo en biocombustibles y productos químicos. Esta aproximación ofrece el potencial de procesos altamente sostenibles que pueden operar en condiciones ambientales.
Metanol
  1. Tecnología electroquímica: basada en la utilización de energía eléctrica y diferencia de potencial entre dos electrodos para reducir el CO2 en productos químicos de valor añadido (por ejemplo, metanol, ácido fórmico, etc.), que puede ser utilizado como combustible de tipo e-fuel, moléculas verdes portadoras de H2, o precursores químicos para uso industrial. La eficiencia de estos procesos ha mejorado significativamente, pero aún enfrentan desafíos en términos de escalabilidad y costos.
  1. Procesos químico-catalíticos: basados en el uso de catalizadores para activar y acelerar la reacción química y transformación del CO2 en productos de valor añadido (metano, metanol, dimetil-éter, etc.). Las líneas de investigación actuales están explorando nuevos catalizadores que puedan operar a bajas temperaturas y presiones, haciendo el proceso más energéticamente eficiente y económicamente viable.

Por otra parte, la transformación de CO2 enfrenta obstáculos técnicos, económicos y regulatorios. La eficiencia energética, la reducción de costos y la integración de estas tecnologías en la infraestructura existente son desafíos clave. Además, se requiere un marco regulatorio que promueva la inversión en estas tecnologías y la utilización de productos derivados del CO2.

A pesar de estos desafíos, la captura y usos de CO2 como fuente de carbono renovable y para contribuir a la descarbonización de la industria y el transporte, ofrece una oportunidad sin precedentes para mitigar el cambio climático y avanzar hacia una economía más sostenible y circular. Al convertir un problema en una solución, podemos desbloquear nuevas vías para la sostenibilidad ambiental, la innovación tecnológica y el crecimiento económico. La colaboración entre gobiernos, industrias y comunidades científicas será fundamental para superar estos desafíos y aprovechar el potencial de estas tecnologías para un futuro más verde.

Proyectos de I+D como CO2SMOS, coordinado por el área de Biotecnología y Química Sostenible de CARTIF, tiene como objetivo desarrollar un conjunto de tecnologías innovadoras, escalables y directamente aplicadas en el sector de las industrias bio-basadas que ayudará a convertir las emisiones de CO2 biogénico en productos químicos de valor añadido para su uso directo en la síntesis de bioproductos materiales de baja huella de carbono. Para ello, se propone una solución híbrida integrada que combina tecnologías innovadoras y procesos intensificados de conversión electroquímica/catalítica y fermentación de precisión, junto con el uso de fuentes de vectores renovable como H2 verde y biomasa. Elementos clave para alcanzar el objetivo de cero-emisiones y neutralidad climática de la industria.