Hidrógeno. Verde que te quiero diseñar verde
La importancia de las herramientas de diseño y optimización de hidrógeno verde
El hidrógeno verde se está posicionando como una alternativa viable en el contexto de la transición hacia fuentes de energía limpias y sostenibles. Este vector energético no sólo permite transformar energía sin emitir contaminantes, sino que también tiene una importante capacidad de almacenamiento a largo plazo, lo que ayuda a abordar uno de los principales problemas de las fuentes de energía renovables como la solar y la eólica: su carácter intermitente y estacional.
Debido a las múltiples aplicaciones del hidrógeno y a la naturaleza variable de las fuentes renovables, el diseño y la optimización de sistemas de producción, almacenamiento y aprovechamiento de hidrógeno verde, son procesos complejos sobre todo cuando se aplica a procesos industriales, donde es necesaria una gestión cuidadosa de toda la cadena para garantizar un funcionamiento continuo y eficaz. Aquí es donde las herramientas de simulación y optimización juegan un papel crucial, facilitando la integración eficiente del hidrógeno en el sistema energético y permitiendo tomar decisiones óptimas basadas en datos detallados y proyecciones precisas.
Necesidad de herramientas especializadas para la transición energética
Para avanzar hacia un sistema energético más sostenible y descarbonizado es esencial aplicar el modelado dinámico y la simulación para optimizar tanto la producción como la utilización del hidrógeno verde en los sectores residencial, industrial y transporte pesado, ya que cada uno presenta diferentes patrones de demanda energética, siendo necesario el desarrollo de herramientas específicas que permitan evaluar múltiples escenarios, optimizar el diseño y determinar estrategias de control y gestión más adecuadas.
Estas herramientas no solo permiten simular el comportamiento de los sistemas en condiciones reales, sino que también ayudan a optimizar parámetros importantes como la potencia nominal de los electrolizadores, el volumen de almacenamiento de hidrógeno y la gestión de los momentos óptimos para consumir o almacenar energía. La aplicaciónn de algoritmos de optimización avanzados tiene como objetivo reducir los costes operativos y de inversión al mismo tiempo que maximizar el uso de energía renovable garantizando que se toman las mejores decisiones técnicas, económicas y ecológicas.
Funcionalidades de la herramienta desarrollada
CARTIF que es Centro de Excelencia Cervera, otorgado por el Ministerio de Ciencia e Innovación y del CDTI, bajo los expedientes CER-20191019 y CER-20211002 ha desarrollado una herramienta de diseño y optimización de este tipo de sistemas gracias al proyecto CERVERA H24NewAge. Se trata de una plataforma que permite el diseño y optimización de sistemas de producción y uso de hidrógeno verde en entornos residenciales e industriales aplicando modelado dinámico junto con Python a través de una interfaz web fácil de manejar que facilita el acceso a simulaciones complejas sin necesidad de conocimientos técnicos avanzados contribuyendo a la democratización de la tecnología del hidrógeno, permitiendo que usuarios de diferentes niveles de experiencia interactúen con modelos complejos y recojan información útil para la toma de decisiones en el diseño de sus sistemas. Algunos de los puntos clave de la herramienta son:
- Simulación de escenarios de producción de hidrógeno: Los usuarios pueden simular una variedad de entornos de producción de hidrógeno, como procesos industriales, cogeneración industrial, microcogeneración residencial y generación de energía eléctrica a gran escala.
- Optimización Basada en Algoritmos Avanzados: La herramienta ayuda a dimensionar el tamaño óptimo de los componentes del sistema, minimizando costes y maximizando el aprovechamiento de la energía renovable utilizando algoritmos de optimización avanzados. También incluye la creación de estrategias operativas que consideren la disponibilidad de energía renovable, la demanda de hidrógeno y las limitaciones de almacenamiento para lograr una operación económica y eficiente.
- Flexibilidad y Adaptabilidad: Parámetros cruciales como la ubicación geográfica, los perfiles de demanda y las tecnologías de producción renovable se pueden ajustar a través de la plataforma, lo que la hace ideal para una variedad de escenarios y necesidades específicas. Esta capacidad es fundamental para que los usuarios puedan evaluar cómo sus diseños se comportarían en diferentes situaciones y escenarios, adaptando las tecnologías de producción y almacenamiento de hidrógeno a las particularidades de cada entorno.
- Visualización de Resultados: La interfaz web de la herramienta facilita la visualización de los resultados de las simulaciones mediante gráficos interactivos y tablas que muestran aspectos clave del sistema, como son: la eficiencia energética, los costes operativos y la capacidad de almacenamiento. Asimismo, los usuarios pueden comparar los resultados de escenarios diferentes, lo que resulta fundamental para identificar oportunidades de mejora y realizar ajustes adicionales.
Conclusiones
En definitiva, contar con herramientas como esta permite evaluar y optimizar estrategias para la producción y uso del hidrógeno verde, facilitando su integración en el sistema energético y contribuyendo a un futuro más sostenible. Gracias al acceso a modelos avanzados y algoritmos de optimización, estas herramientas permiten tomar decisiones fundamentadas, lo que deriva en sistemas más eficientes y resilientes. Un ejemplo claro sería la capacidad óptima de almacenamiento de hidrógeno, cuya correcta estimación puede evitar costes innecesarios y garantizar un suministro constante, incrementando la eficiencia operativa del sistema. Además, la facilidad de uso y la flexibilidad que ofrecen estas plataformas ayudan a reducir las barreras técnicas para adoptar el hidrógeno verde, haciéndolo una opción accesible y viable para un mayor número de usuarios y aplicaciones. Esto es clave para avanzar hacia una transición energética efectiva y para fomentar soluciones que disminuyan la dependencia de combustibles fósiles y favorezcan la mitigación del cambio climático.
Co-autor
Jesús Samaniego. Ingeniero Industrial. Desde 2002 trabaja en CARTIF en el desarrollo de proyectos dentro del campo de la eficiencia energética, la integración de energías renovables y en el estudio de la calidad del suministro eléctrico