¡La naturaleza vuelve a Valladolid!

¡La naturaleza vuelve a Valladolid!

Durante el confinamiento, hemos sido testigos de cómo la naturaleza volvía rápidamente a las ciudades en nuestra ausencia. La flora silvestre se adueñaba de los rincones de nuestras ciudades, creciendo de cada grieta disponible y recuperando poco a poco el espacio perdido. Se hizo visible que las calles también pertenecen a la vegetación, pero tal y como está pensada la ciudad impide su desarrollo. ¿En qué momento la naturaleza empezó a desaparecer de los entornos urbanos?¿Es posible que convivan? Y, si queremos que la vegetación vuelva definitivamente a las ciudades y poder disfrutar de ella, ¿qué medidas se pueden tomar?.

La relación entre la naturaleza y la ciudad no siempre ha sido como la conocemos actualmente. Antes del desarrollo de la ciudad moderna, la vegetación estaba incluida en muchos espacios (paseos arbolados, espolones, alamedas…) formando parte del paisaje urbano. Algunos de estos espacios todavía sobreviven y podemos disfrutar de ellos. Pero esta convivencia empieza a desaparecer con el desarrollo de la ciudad actual (mitad del s. XX). Debido a la creciente demanda de espacios para coches, carreteras, aparcamientos, edificios… la ciudad se ha ido deforestando y relegando los espacios verdes y arbolado a un segundo plano, limitando su crecimiento a zonas concretas y aisladas, y en muchos casos desapareciendo por completo. Tomando como ejemplo la ciudad de Valladolid, podemos encontrar múltiples casos donde el arbolado y los jardines desaparecieron durante esta época. La Plaza Mayor, San Benito, Plaza Zorrilla, San Pablo… en la actualidad son plazas duras, impermeables y sin rastro de la vegetación que hasta hace no tanto tenían.

Con este nuevo urbanismo no solo se perdieron muchos espacios verdes, también los beneficios sociales y ambientales que aportan, reduciendo la calidad y el confort de los espacios urbanos. Las zonas verdes son zonas de ocio, juego, deporte y espacios de contacto con la naturaleza, pero también mejoran el bienestar y confort de los ciudadanos al reducir las altas temperaturas y mejorar la calidad del aire captando contaminación ambiental. Actualmente, la presencia de vegetación en las ciudades es especialmente importante para ayudar a adaptar las ciudades al cambio climático y mitigar sus efectos, ya que actúan como sumideros de carbono y mejoran la gestión del agua de lluvia, entre otros beneficios.

Por ello, en los últimos años ha cobrado una gran importancia revertir el modelo de ciudad actual e implantar nuevas políticas de desarrollo urbano orientado a re-naturalizar y recuperar la tradición de la naturaleza en la ciudad.

Las ciudades están empezando a tomar medidas en este sentido y ya hay actuaciones que reintroducen nuevos espacios verdes urbanos para aprovechar sus beneficios. Retomando el ejemplo de Valladolid, un caso representativo es el de la plaza España. Esta, como muchas otras plazas, perdió su arbolado para la construcción de un parking subterráneo, sobre el cual se encuentra un mercado actualmente.

espacios verdes urbanos valladolid (plaza españa)
Evolución de la Plaza España en imágenes

Gracias a fotografías antiguas, se puede ver que anteriormente la plaza era una zona verde, con dos filas de arbolado, ofreciendo un espacio sombreado y agradable. Es con la construcción del parking subterráneo (1995) cuando desaparece la vegetación en la superficie. Hasta ahora, la plaza se había mantenido como un espacio duro, sin apenas rastro de la vegetación de antaño y no es hasta el año pasado (2020) cuando se recuperó la plaza como un espacio verde de la ciudad. Esta acción se encuentra dentro del proyecto URBAN GreenUP, coordinado por CARTIF (www.urbangreenup.eu), cuyo objetivo es la aplicación de planes de Re-naturalización Urbana, en Valladolid y en otras dos ciudades europeas, Liverpool (Reino Unido) e Izmir (Turquía). En este caso, se trata de una cubierta verde sobre la marquesina, que permite mantener los usos actuales de mercado y parking. Devolver la vegetación a la plaza no solo tiene un impacto estético, también repercute en el confort y bienestar del espacio proporcionando además otros beneficios como una mejor gestión del agua de lluvia y la creación de un nuevo espacio para promover la biodiversidad urbana.

La combinación de nuevas formas de vegetación junto con las tradicionales, ha permitido que la naturaleza vuelva a este punto de la ciudad… de donde nunca debió marcharse. ¡Esperamos que muchas plazas sigan este ejemplo y recuperen los espacios verdes perdidos!

Biometano y biohidrógeno: el futuro de la energía está aquí

Biometano y biohidrógeno: el futuro de la energía está aquí

Tanto el biometano como el biohidrógeno son dos gases que vienen pisando fuerte en nuestro panorama energético actual. Ambos tienen un origen renovable y su formación puede ir asociada a procesos de captura y almacenamiento de CO2, otro de los grandes objetivos de nuestra sociedad para luchar contra el calentamiento global.

El biometano no es otra cosa que metano con origen renovable, en contraposición al gas natural donde el metano tiene un origen fósil. El biometano se genera habitualmente al purificar el biogás que se produce en los digestores anaerobios que tratan corrientes residuales como fangos de depuradora, estiércoles u otras corrientes biodegradables. Es la operación generalmente conocida como proceso de upgrading [1]. El biometano tiene la ventaja añadida de que es químicamente idéntico al gas natural, por lo que le puede sustituir en cualquiera de sus aplicaciones. Se espera, por ello, que el biometano juegue un papel trascendental para la descarbonización de la economía española y europea con miras al 2050 [2].

Si volvemos del biogás, su otro componente mayoritario es el CO2, pero existe la posibilidad de reintroducir este CO2 al digestor anaerobio o tratarlo en otro reactor y, a través de los que se conoce como proceso de metanación, generar más biometano [3]. Es decir, podemos emplear CO2 para generar metano, ¿quién da más? Pero este proceso no está tan maduro como el de la digestión anaerobia convencional y, si bien se ha demostrado que es técnicamente factible ( se conocen en Europa más de 100 plantas operativas), el rendimiento del proceso necesita mejorar para que su viabilidad económica esté fuera de toda duda.

Una vez que disponemos del biometano, otra opción que tenemos es generar hidrógeno verde (denominado así por su origen renovable) a través de un conocido proceso de reformado. El reformado de gas natural para producir hidrógeno es una práctica industrial habitual, por lo que reformar biometano es una opción totalmente plausible. El reformado habitual se realiza haciendo reaccionar el metano con vapor de agua, pero ya hay trabajos que han demostrado la posibilidad de sustituir ese vapor de agua por CO2, por lo que volvemos a utilizar el dióxido de carbono como materia prima, retirándolo de la atmósfera y produciendo en su lugar el tan deseado hidrógeno.

Pero el hidrógeno también puede tener un origen biológico, que es lo que se conoce como biohidrógeno. En la naturaleza existen algas y bacterias que generan hidrógeno a través de sus ciclos metabólicos. Dichos organismos, cultivados en un medio controlado, pueden convertirse también en una fábrica de biohidrógeno. En este caso, y al igual que ocurría en los procesos de metanación, se ha demostrado que los procesos funcionan y pueden ser escalables, pero los rendimientos que se alcanzan en la actualidad siguen siendo una barrera a su implementación con fines industriales.

Pero para eso está la investigación, para seguir trabajando y hacer que estos procesos (y otros de los que hablaremos en otra ocasión) sean una realidad en el corto-medio plazo.

[1] Hidalgo, D., Sanz-Bedate, S., Martín-Marroquín, J. M., Castro, J., & Antolín, G. (2020). Selective separation of CH4 and CO2 using membrane contactors. Renewable Energy, 150, 935-942.

[2] Elguera, N. M., Salas, M. D. C., Hidalgo, D., Marroquín, J. M., & Antolín, G. (2020). Biometano, el gas verde que pide paso en España. IndustriAmbiente: gestión medioambiental y energética, (30), 50-56.

[3] Hidalgo, D. Martín-Marroquín, J.M. (2020). Power-to-methane, coupling CO2 capture with fuel production: An overview. Renewable and Sustainable Energy Reviews, Volume 132, 110057.

Blockchain para un mundo mejor

Blockchain para un mundo mejor

En entradas anteriores del blog ya se ha comentado qué es y cómo funciona Blockchain, además de las oportunidades que dicha tecnología ofrece a los clientes del sector eléctrico. En esta, vamos a volver a hablar de esta tecnología, describiendo el amplio abanico de posibilidades que ofrece la misma en el sector energético y medioambiental.

A modo de introducción, conviene destacar que la tecnología blockchain tiene el potencial de transformar el sector energético (y, de hecho, ya ha comenzado a hacerlo). El World Economic Forum ya identificó en 2018 ( en su publicación titualda «Building Block(chain)s for a Better Plannet» (septiembre de 2018) más de 65 casos de uso de aplicación de Blockchain en el sector energético y medioambiental. Estos casos de uso incluyen modelos de negocio para los mercados energéticos, el intercambio de créditos de carbono e incluso la utilización de una cadena de bloques para almacenar la información relativa a certificados energéticos.

El registro distribuido e inmutable que proporciona la tecnología Blockchain permite la compartición de información entre iguales de forma segura y sin la necesidad de intermediarios o entidades centrales que gestionen el intercambio de información. Se trata de una tecnología capaz de transformar completamente muchos procesos en el ámbito de los negocios, la gobernanza y la sociedad, brindando múltiples oportunidades para luchar contra el cambio climático, la pérdida de biodiversidad o la escasez de agua.

Una aplicación muy interesante de blockchain es su utilización en el intercambio de energía entre iguales. Hoy en día, muchos consumidores de energía se han convertido en «prosumidores» (es decir: además de consumir energía pueden también generarla (son capaces de generar energía renovable)). Por ello, y dada la intermitencia y la enorme dificultad de predecir con exactitud la disponibilidad de las energías renovables, los prosumidores pueden decidir instalar dispositivos de almacenamiento para poder almacenar dicha energía y así tenerla disponible cuando la necesiten, e incluso pueden vendérsela a otros consumidores que puedan necesitarla en otro momento. La utilización de Blockchain en este caso es clara: dicha tecnología proporciona un registro distribuido e inmutable de las transacciones realizadas, y elimina la necesidad de entidades centrales que gestionen dichos intercambios. Cuando se plantean estas situaciones, la mayor parte de nosotros pensamos en la energía eléctrica, pero también es posible intercambiar otros tipos de energía, como pueden ser el calor y/o frío residual.

En el ámbito del poyecto SO WHAT, CARTIF ha participado en la definición del modelo de negocio asociado a la utlización de Blockchain para el intercambio de calor y frío residual. Por otra parte, tanto en el proyecto de investigación interno OptiGrid (financiado por el Instituto de Competitividad e Innovación Empresarial (ICE), cuyo objetivo principal era el desarrollo de soluciones innovadoras en el ámbito de las smart grids), como en el proyecto Energy Chain (proyecto financiado también por el ICE y en el cual CARTIF participa en calidad de subcontratado por Alpha Syltec Ingeniería) se ha trabajado y está trabajando en soluciones blockchain para desplegar plataformas de intercambio de energía entre iguales. En el caso del proyecto Energy Chain, los algoritmos de machine learning desarrollados por Alpha Syltec Ingeniería generarán valiosa información sobre predicción de la generación y la demanda que será utilizada como entrada por los contratos inteligentes desplegados en la plataforma blockchain anteriormente mencionada.

Por otra parte, la utilización de Blockchain en el ámbito de las Ciudades Inteligentes o Smart Cities está cada vez más extendido dada su capacidad para transmitir información de forma segura y sin intermediarios. Además de su utilización en el sentido comentado en el párrafo anterior, blockchain puede impulsar la utilización del vehículo eléctrico, puede utilizarse como soporte a la participación ciudadana (incrementando la seguridad, transparencia y fiabilidad en las consultas a la población tales como elecciones, encuestas, referéndums…)

También existen iniciativas que ayudan a las entidades (o incluso a particulares) a compensar su huella de carbono invirtiendo en proyectos de descarbonización, y muchas de ellas utilizan la tecnología blockchain para dotar de una mayor seguridad y transparencia a sus operaciones. Este es el caso de ClimateTrade, cuyo principal objetivo es ayudar a las empresas a alcanzar la neutralidad de carbono ofreciéndoles su servicio de compensación de emisiones.

Otra iniciativa muy interesante es la utilización de blockchain para resolver el problema de la garantía de origen (GdO), que actualmente únicamente puede realizarse mediante acreditación por parte de un tercero que asegurará que un número, X, del total de megavatios-hora de energía eléctrica producidos em una central en un periodo temporal determinado han sido generados a través de fuentes de energía renovables. Utilizando acreditación, lo cual reduce costes y tiempos de espera.

Ciudades como Nueva York y estados como Virginia Occidental han utilizado blockchain para realizar intercambio de energía o para votar utilizando el móvil, Estonia lo está utilizando para la gestión de datos personales, y el Smart City Program de Dubái contempla más de 500 proyectos blockchain que cambiarán la forma de interactuar con la ciudad. Block chain es ya una realidad, y ha venido para quedarse.

De consumidor a prosumidor

De consumidor a prosumidor

La mayoría de usuarios llevamos consumiendo electricidad de la misma forma toda la vida. Simplemente sabemos que podemos enchufar el dispositivo eléctrico que queramos en cualquier instante, y que, a cambio, a final de mes nos llega una factura (para muchos, más difícil de entender que un jeroglífico egipcio, por cierto). Pero este modo de consumir electricidad puede cambiar muy pronto (si no lo ha hecho ya). Desde hace no mucho, podemos contribuir con nuestra propia energía a la red sin muchas complicaciones, decidir cuál es el mejor momento para consumir, o asociarnos con otros usuarios para beneficiarnos mutuamente…o todo al mismo tiempo.

Dicho de otra forma, se está pasando de un modelo en el que el usuario tenía un rol meramente pasivo, a otro totalmente distinto, donde el usuario puede tener una participación activa en la producción, gestión y consumo de electricidad. Para este cambio de paradigma, ha surgido una nueva palabra que probablemente cada vez escuchemos más, como resultado de combinar productor y consumidor: prosumidor.

Y es que, aunque ahora el concepto de prosumidor es más amplio, originalmente (y todavía mayoritariamente) se refiere a aquel usuario que produce su propia energía para su autoconsumo, y vierte los excedentes a la red eléctrica. De esta forma, no sólo se puede consumir menos de la red, sino que también se aporta nuestra electricidad al sistema principal, y contribuimos a alcanzar un modelo más sostenible a la vez que podemos reducir nuestra factura.

Dado el auge de las instalaciones de generación distribuida para autoconsumo impulsadas en gran medida por la publicación del RD 244/2019, no es de extrañar que este tipo de prosumidor sea de lo más habitual. Sin embargo, las opciones para los prosumidores son cada vez más variadas, y no sólo se limitan a instalar paneles solares en nuestro tejado.

Por poner un ejemplo, se puede considerar también la interacción de forma más proactiva con la red mediante la combinación de un consumo consciente de electricidad con las tarifas eléctricas dependientes del precio del mercado (tarifas indexadas al pool-el mercado horario- o las llamadas tarifas PVPC-Precio Voluntario del Pequeño Consumidor, para usuarios con una potencia contratada menor a 10kW). Con este tipo de tarifas, cada día se puede conocer el precio horario de la electricidad del día siguiente, de manera que, si hoy nos dicen que mañana por la mañana el precio de la electricidad va a costar una octava parte de loq ue nos cuesta ahora mismo (como ocurrió hace unos días), podemos decidir si preferimos no poner hoy ciertos electrodomésticos (lavadora, secadora, lavavajillas, en el caso de los consumidores residenciales), y ponerlos mañana, ahorrándonos un pellizquito por el término de energía asociada a sus consumos.

Pero, ¿ y qué ocurre cuando apenas hay sol o viento, y los precios del mercado eléctrico se disparan a máximos históricos, como se dio hace unas semanas durante la borrasca Filomena? En el caso anterior, básicamente tendríamos que «aguantar el chaparrón» (nunca mejor dicho), y pagarlo a final de mes. Sin embargo, si dispusiéramos de soluciones de almacenamiento de energía, podríamos evitar este tipo de situaciones, y en general podríamos reducir nuestros consumos de la red durante períodos en los que el precio de la energía es alto (conocidos como períodos pico). Esta alternativa de prosumidor es también muy sencilla: por las noches o por las mañanas, cuando la electricidad es más barata, podríamos programar la carga de nuestros equipos de almacenamiento de energía (baterías eléctricas, incluido nuestro propio vehículo eléctrico, pero también sistemas térmicos o termoeléctricos), de manera que, cuando subiera el precio de la electricidad, no tendríamos que pagar sus desorbitados costes, sino que podríamos utilizar nuestra energía almacenada.

Precisamente, esta combinación de opciones de prosumidor -instalación de un sistema de producción renovable, almacenamiento, tarifas dinámicas y gestión activa de nuestra demanda-, es parte del estudio que se está considerando en el proyecto MiniStor, donde CARTIF participa desde hace algo más de un año. En él, se está desarrollando un sistema de almacenamiento termoeléctrico que integra baterías de litio, materiales de cambio de fase y un reactor termoquímico, combinado con paneles solares híbridos que producen tanto calor como electricidad, y una gestión energética óptima, teniendo en cuenta tanto la predicción de nuestro consumo, como la producción de nuestra instalación y el coste de la electricidad. Un reto interesantísimo del que podremos contaros pronto nuestros primeros resultados.

Como hemos visto, las opciones de participación de los prosumidores van mucho más allá de tener nuestra propia instalación de autoconsumo (que no es poco), y, aunque esta vez hemos presentado unas pocas, las alternativas donde este actor tiene un papel fundamental son casi infinitas (agregadores de la demanda, integración del blockchain, microrredes, Comunidades Energéticas…) Seguramente, dentro de poco tiempo surgirán otras que ahora mismo no somos capaces de imaginar. Lo que queda claro, es que el peso de los prosumidores ya se considera determinante, nos encontramos al principio de lo que puede ser un auténtico cambio de paradigma del sector energético, y desde CARTIF estamos a pie de pista para ser líderes en esta revolución.

Y tú, ¿te animas a convertirte en prosumidor?

¿La minería sostenible es posible?

¿La minería sostenible es posible?

La actividad minera ha definido a la civilización desde sus inicios y aproximadamente en el 90% de nuestras actividades cotidianas utilizamos elementos químicos y minerales que se extraen del interior de la tierra.

Actualmente, la minería contribuye a procesos sostenibles, como su aportación al Pacto Verde Europeo para alcanzar cero emisiones de gases de efecto invernadero en el 2050, asegurando el suministro de las materias primas, en particular de las materias primas críticas o fundamentales. Las materias primas críticas son aquellas que tienen importancia económica y estratégica para Europa, pero con un alto riesgo de suministro.

La lista de la UE para 2020 contiene treinta materias primas críticas, utilizadas en electrónica, salud, siderurgia, aviación, etc., y algunas de ellas están presentes cada vez más en las energías renovables. Un ejemplo de esto es la incorporación a esta lista del litio, utilizado en las baterías de vehículos eléctricos e híbridos y la bauxita, principal fuente de aluminio, que con el acero y el cobre representa aproximadamente el 90% del peso total de una turbina eólica. Los imanes permanentes de los generadores de estas mismas turbinas también contienen otras materias primas críticas como algunas tierras raras, cobalto y boro.

En la energía solar fotovoltaica más del 90% de las células solares instaladas en los paneles están fabricados con silicio, además de contener otras materias primas críticas como el indio, galio y germanio.

A su vez, en la propia actividad minera se están implementando medidas sostenibles como técnicas novedosas en la restauración de impactos generados y la utilización de la teledetección para supervisar el comportamiento ambiental. Otra medida es el reprocesamiento de los residuos, por ejemplo del hierro, zinc y platino, convirtiendo estos en materias primas secundarias avanzando hacia una economía circular que incrementará los puestos de trabajo en la UE de aquí a 2030.

Cada vez se está utilizando más maquinaria minera eléctrica e híbrida con sistemas autónomos y de geolocalización, ahorrando costes y combustibles, y se están poniendo en marcha diversos proyectos donde existen instalaciones de energía eólica y solar fotovoltaica para autoconsumo en las explotaciones mineras.

Otro mecanismo que contribuye al Pacto Verde Europeo es el de la Transición Justa con la diversificación de actividades en regiones con alta dependencia del carbón, donde existen fuentes de materias primas utilizadas en energías renovables.

Por último, en la consecución del objetivo de cero emisiones en la UE, se tendrán en cuenta los riesgos ambientales y sociales que suponen los acuerdos estratégicos para garantizar el suministro de las materias primas críticas con algunos países fuera de la UE.

Como conclusión, el sector minero es importante para la descarbonización de Europa y la utilización de energía renovables y limpias integrando estas en sus propias operaciones mineras.

Poniendo un poco «verde» a tu coche (en el buen sentido)

Poniendo un poco «verde» a tu coche (en el buen sentido)

Como ya sabrás, el aumento de las emisiones de gases de efecto invernadero (principalmente dióxido de carbono y metano) como consecuencia de la actividad humana es una de las principales causas del ritmo más acelerado del cambio climático en las últimas décadas. Y entre la amplia gama de causas, los turismos son una de las principales fuentes de emisiones de CO2, representando un 12% de las emisiones totales (Comisión Europea).

Por este motivo, la Unión Europea viene adoptando medidas cada vez más estrictas para regular los niveles de emisiones. En 2015, se estableció un límite de 130 gramos de CO2 / km. Además, para 2021 se prevé fijar un objetivo más ambicioso en 95 gramos de CO2 / km.

En este contexto, los fabricantes de automóviles se han visto obligados a reducir el consumo de combustible (o aumentar la autonomía en los vehículos eléctricos) y las emisiones en sus modelos de gasolina y diésel. ¿Cómo pueden hacer eso los fabricantes de automóviles? Además de diseñar motores más eficientes, la estrategia principal es el aligeramiento. Esta técnica consiste en reducir el peso del coche sustituyendo los materiales más pesados ​​(es decir, el acero) por otros más ligeros como el plástico o los composites.

Sin embargo, actualmente la mala gestión y el mal uso de los plásticos en lugar del material en sí es uno de los principales problemas ambientales, ya que 8 millones de toneladas de los 300 millones de toneladas de plástico que se producen anualmente terminan en el océano (según datos de International Unión para la Conservación de la Naturaleza). Entonces parece que aumentar el uso de plásticos en los automóviles no parece una solución ideal, ¿verdad? Bueno, ¿qué tal si se utiliza un material alternativo con un rendimiento similar o incluso mejor que los plásticos convencionales y una huella medioambiental reducida? No parece una tarea fácil, aunque los bioplásticos pueden ser parte de la respuesta.

¿Qué son los bioplásticos y por qué parecen estar tan de moda hoy en día? Según European Bioplastics, se trata de un conjunto heterogéneo de materiales con diferentes propiedades y aplicaciones que pueden ser de base biológica, biodegradables o ambos.

En otras palabras, los bioplásticos, al ser de base biológica, su uso reduce potencialmente el consumo de combustibles fósiles mientras que su biodegradabilidad amplía las posibilidades de tratamiento en la etapa final de su vida útil. Como resultado, estos materiales podrían lograr la combinación deseada de rendimiento y sostenibilidad..

De eso se trata el proyecto BIOMOTIVE. Intenta desarrollar materiales (fibras textiles, espumas de poliuretano para asientos de automóviles y otras piezas a base de poliuretano para el interior de automóviles) a partir de fuentes de origen biológico que combinan buenas propiedades técnicas con un impacto ambiental reducido. Partiendo de materias primas renovables como biomasa forestal y aceites vegetales que no compiten con la cadena alimentaria, se espera producir a escala industrial productos con hasta un 80% de contenido de base biológica.

El proyecto ha recibido financiación del Programa de Investigación e Innovación Horizonte 2020 de la Unión Europea y reúne a empresas e instituciones privadas europeas que comparten el ideal de reducir el impacto de la industria allanando el camino hacia una economía más sostenible.

El papel de CARTIF en el proyecto es realizar la evaluación de la sostenibilidad de los productos finales, ya que el prefijo «bio» no significa necesariamente que un producto sea mejor para el medio ambiente que su contraparte de origen fósil. Para determinar que con base científica, es importante evaluar los impactos del producto a lo largo de todo su ciclo de vida (es decir, desde la extracción de las materias primas hasta el final de su vida útil) considerando no solo los impactos ambientales, sino también sociales y aspectos económicos.

Entonces, la próxima vez que sostenga un objeto de plástico, antes de tirarlo, vale la pena considerar de dónde vino y adónde irá.